This document may not be reproduced by any means nor modified, decompiled, disassembled, published or distributed, in whole or in part, or translated to any electronic medium or other means without the prior written consent of SolarWinds. All right, title, and interest in and to the software, services, and documentation are and shall remain the exclusive property of SolarWinds, its affiliates, and/or its respective licensors.

SOLARWINDS DISCLAIMS ALL WARRANTIES, CONDITIONS, OR OTHER TERMS, EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, ON THE DOCUMENTATION, INCLUDING WITHOUT LIMITATION NONINFRINGEMENT, ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY INFORMATION CONTAINED HEREIN. IN NO EVENT SHALL SOLARWINDS, ITS SUPPLIERS, NOR ITS LICENSORS BE LIABLE FOR ANY DAMAGES, WHETHER ARISING IN TORT, CONTRACT OR ANY OTHER LEGAL THEORY, EVEN IF SOLARWINDS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The SolarWinds, SolarWinds & Design, Orion, and THWACK trademarks are the exclusive property of SolarWinds Worldwide, LLC or its affiliates, are registered with the U.S. Patent and Trademark Office, and may be registered or pending registration in other countries. All other SolarWinds trademarks, service marks, and logos may be common law marks or are registered or pending registration. All other trademarks mentioned herein are used for identification purposes only and are trademarks of (and may be registered trademarks) of their respective companies.
Table of Contents

Network Performance Monitor Administrator Guide ... 10

- Orion Platform features ... 10
- Pre-installation hints .. 10
- Common features ... 11

NPM licensing model ... 12

- License NPM with other SolarWinds products ... 13
- Manage and activate your NPM license ... 14
- Uninstall SolarWinds NPM .. 14

Manage interfaces .. 16

- View interface status, interface health, and details about downtime .. 16
 - Change the time period .. 16
 - Set the retention period for interface downtime history ... 17
 - Disable interface downtime monitoring ... 17
 - View interface health .. 17
- Detect and predict duplex mismatches .. 18
 - How do I resolve mismatches? ... 19
 - Troubleshoot duplex mismatches ... 19
- Edit interface properties .. 19
- Suspend collecting data for interfaces ... 20
 - Maintenance mode .. 21
 - Set the interface status as Unpluggable ... 21
- Remotely manage monitored interfaces .. 21

Monitor capacity usage trends on the network and forecast capacity issues 23

- Forecast capacity for nodes, interfaces, or volumes ... 23
 - Locate pending capacity problems .. 23
 - View capacity usage trends and forecast in graphs ... 24
 - View capacity usage trends and forecast in tables ... 24
 - Add capacity forecasting resources .. 24
Change capacity forecasting settings globally ... 24
Change calculation method and thresholds for nodes or volumes 25
Change calculation method and thresholds for interfaces ... 25
Customize capacity forecasting settings for single nodes, interfaces, or volumes 25
Customize capacity forecasting thresholds and calculation methods for nodes: 26
Customize capacity forecasting settings for interfaces: .. 26
Customize capacity forecasting settings for volumes: ... 27

Discover your network paths .. 28

Key features of NetPath™ ... 28
How does NetPath™ work? .. 28
NetPath requirements .. 29
 Probe computer .. 29
 Orion integration ... 29
 Ports ... 30
 Database storage .. 30
 Example storage requirement calculation .. 30
Cloud environment ... 32
Scalability .. 32
Create a service ... 33
 Create a new service ... 33
Probing interval ... 33
Create a probe .. 34
 Create a probe ... 34
Assign additional probes .. 34
Probe troubleshooting ... 34
 Check the probe status ... 34
View a network path .. 35
 Path layout .. 35
 Path history .. 38
 Available actions in the path history .. 38
Troubleshoot a service with external path data .. 39
Troubleshoot my network with Orion path data .. 41
Orion integration with NetPath .. 44
 NPM integration ... 44
 NTA integration .. 44
 NCM integration .. 45

Monitor Cisco ACI devices ... 46
 Requirements .. 46
 Add ACI devices and enable ACI polling ... 47
 Enable polling for Cisco ACI on a monitored node .. 48
 View health scores for ACI members ... 48
 View health score and status history in PerfStack ... 49
 View your SDN infrastructure on Orion Maps ... 49

Monitor ASA firewalls with NPM ... 51
 Set up monitoring Cisco ASA firewalls .. 51
 What does CLI polling provide? .. 51
 Requirements ... 52
 Add ASA firewalls using CLI credentials .. 52
 Enable CLI polling on monitored devices ... 53
 Troubleshoot CLI polling ... 53
 Understand ASA platform health .. 54
 What other aspect of the ASA platform are you interested in? 56
 Monitor contexts ... 57
 Monitor high availability for Cisco ASA devices .. 57
 Monitor interfaces .. 59
 Select favorite interfaces and Site-to-Site VPNs for the Summary subview 59
 Monitor VPN tunnels on ASA firewalls .. 60
 Site-to-Site VPN .. 60
 Remote access VPN .. 60
 Review access lists on ASA firewalls .. 61
Why is heat count 0?61
Object groups61

Monitor Cisco Nexus devices .. .62
Set up monitoring for Cisco Nexus devices62
What does CLI polling provide for Nexus devices?63
Requirements for Network Insight for Cisco Nexus devices63
Add Nexus devices for monitoring63
Enable CLI polling on monitored devices64
Troubleshoot monitoring Cisco Nexus devices64
Access Nexus-specific information67

Monitor Cisco SwitchStack69
View stack members and rings .. .69
View the health of stack members70
Cisco SwitchStack events .. .70
Out-of-the-box alerts for SwitchStack71
Create alerts based on SwitchStack events71

Set up and monitor Cisco Unified Computing Systems (UCS)73

Network Insight for F5 BIG-IP load balancers75
Set up Network Insight for F5® BIG-IP® load balancers75
Requirements75
Add F5 devices and enable iControl76
Enable iControl on F5 load balancers76
Monitor services delivered by F5® BIG-IP® load balancers77
Status of F5 devices80
F5 device status mapping to Orion status81
F5 status in Orion .. .81
F5 high availability .. .82
F5 health monitors .. .84
Events, alerts, and reports for Network Insight for F5® BIG-IP® load balancers .. .85
Out-of-the-box alerts for F5 load balancers86
Out-of-the-box reports ... 86
Take an F5 pool member out of rotation 86
Why shouldn’t I start maintenance immediately after I take a pool member out of rotation? 86
Take a pool member out of rotation ... 87

Monitor wireless networks .. 88
Migrate data from the Wireless Networks Module 88
View wireless data in the Orion Web Console 88
Monitor Meraki infrastructure ... 89
What does NPM monitor for Meraki infrastructure? 89
Unsupported metrics ... 89
Requirements .. 90
Add Meraki organization to NPM ... 90
Monitor Meraki organizations .. 92
Edit Meraki organizations ... 93
Create wireless heat maps ... 94
Disable the wireless heat map poller ... 94
Set a floor plan as the background ... 95
Set the wireless heat map scale ... 95
Add wireless access points ... 96
Improve the accuracy of wireless heat maps by taking samples of the signal strength on real devices ... 97
Take simple signal samples .. 97
Take multiple signal samples at the same time 98
Troubleshoot wireless heat maps ... 98
Display wireless heat maps in the Orion Web Console 98
Change the time and frequency for regenerating the map 99

Monitor EnergyWise devices .. 100
Add the EnergyWise Summary View to the Orion Web Console menu bar 100
Temporarily reset the current power level of a monitored EnergyWise interface 100

Set SolarWinds NPM thresholds .. 102
Create custom monitors .. 103
Management Information Base (MIB) .. 104
Monitor custom statistics based on OIDs with Universal Device Pollers 104
 Define a custom statistic to monitor .. 105
 Troubleshooting failed tests ... 108
Select nodes or interfaces to poll a custom statistic ... 109
Transform poller results ... 109
Create pollers by duplicating and adjusting pollers ... 111
Import UnDP pollers ... 112
Export UnDP pollers .. 113
Temporarily suspend collecting statistics for pollers ... 113
Define UnDP Warning and Critical thresholds .. 114
View Universal Device Poller statistics in the Orion Web Console 115
 Define resources with UnDP results for Orion Web Console views 115
View UnDP status on maps .. 115
Assign Universal Device Pollers to monitored devices ... 116
Cannot find OIDs? Update the SolarWinds MIB Database ... 116
Manage unique devices on the network ... 117
Device Studio technologies ... 118
 Data sources used in Device Studio .. 118
Create pollers in Device Studio .. 119
 Define object identifiers (OIDs) that do not exist in the SolarWinds MIB database 121
What is the SNMP Get Type? ... 122
What is a formula? ... 122
Formulas used for transforming Device Studio poller results .. 122
Test Device Studio pollers .. 124
Monitor devices using THWACK community pollers ... 124
 Test THWACK Device pollers ... 124
Import Device pollers from THWACK ... 125
Import THWACK community pollers to an environment without Internet connection 125
Export Device Studio pollers to the THWACK community ... 125
Why can't I connect to THWACK? .. 125
Assign Device Studio pollers to monitored devices ... 125
Scan monitored objects to verify if the OIDs match .. 126

Integrate an Orion Platform product with ServiceNow ... 127

Before you begin ... 127
Install and configure the SolarWinds Alert Integration application in ServiceNow 127
 Create a ServiceNow integration user with Web service access only 128
Configure an Orion Platform product with ServiceNow .. 128
Configure web proxy settings ... 128
Network Performance Monitor Administrator Guide

This guide provides an overview of product features and related technologies. In addition, it contains recommendations on best practices, tutorials for getting started with advanced features, and troubleshooting information for common situations.

For information about planning, installing and getting started with NPM, see the [NPM Getting Started Guide](#).

Orion Platform features

The [Orion Platform](#) is the core of the SolarWinds IT Management Portfolio. It provides a stable and scalable architecture that includes data collection, processing, storage, and presentation. The Orion Platform provides [common features](#), such as user accounts and groups, views, dashboards, reporting, alerting, and more that you can use across all [Orion Platform products](#) and access from the Orion Web Console.

Pre-installation hints

Before you install your Orion Platform products, review the following details:

Orion Platform requirements

- [Hardware, software, and port requirements](#) for the Orion Platform server and SolarWinds Orion database.

Licensing

- [Licensing differs among Orion Platform products](#). [Activate, add, upgrade or assign licenses](#) with the License Manager in the Orion Web Console.

Installation or upgrade

- Use the [SolarWinds Orion Installer](#) to easily install or upgrade multiple Orion Platform products simultaneously.

 While installing your Orion Platform products, you might need to [configure SSL for the Orion Web Console](#), [enable FIPS](#), or review [directories to be excluded from antivirus protection](#).
Common features

The following features are available in Orion Platform products.

Learn Orion Platform basics

- **Log in to your Orion Platform product in a web browser** and **meet the Orion Web Console**.
- Review **Events**, **syslogs**, or **SNMP traps** to know what's going on.
- **Get alerts** about issues in your environment.
- Generate **reports** to present the status of the monitored environment.
- Review **Performance Analysis dashboards**, also known as PerfStack™.
- **Create, edit, and maintain Orion Web Console user accounts** - set user rights, reset passwords, limit access to network segments, and enable authentication with Active Directory.
- **View monitored objects on maps in the Orion Web Console** - view automatically generated Orion Maps as a subview, display objects with their location specified in the OpenStreet format in a widget, or create maps the Network Atlas tool and display them in the Orion Web Console.

Add devices for monitoring and manage monitored devices

- Specify which devices to monitor and the information you need, then select the way you get this information. See **Discover and add devices**.
- **Add single nodes**, **use Active Directory domain controllers to add nodes**, or **discover devices** on your network automatically.
- Available polling methods include ICMP, WMI, SNMP, or **agents** deployed on Windows, Linux, and UIX devices.
- **Manage monitored devices** - edit properties, set the polling method for monitored devices, toggle monitoring on and off, or mute alerts for nodes.

Customize your Orion Web Console

- **Customize Orion Web Console** - customize dashboards, colors, logo, views, widgets and charts. Learn how to limit what objects users see on views, or specify what you want to see on views for specific device types.
- **Create custom properties** - create custom fields to associate with monitored network objects and display custom information for monitored devices.
- **Create groups and dependencies** - organize how monitored data is presented in the Orion Web Console. Set up dependencies to better represent the relationships between network objects and account for constraints on the network.
- **Set thresholds** - specify thresholds for monitored metrics. Customize general thresholds or use baselines.
Monitor additional metrics and devices

Monitor hardware health - get insight into hardware issues on the network. Monitor hardware health based on hardware sensors, such as fan status, power supply status, or temperature.

Monitor virtual environments - monitor your virtual networks (VMware® ESX and ESXi servers, VMware vCenter®) in the Orion Web Console.

Quality of Experience - use packet analysis sensors to see packet-level traffic information about key devices and applications on your network.

Expand the Orion Platform functionality or scale your deployment

Use SolarWinds High Availability (HA) to provide failover protection for your Orion server and additional polling engines to reduce data loss.

Do you need to scale your deployment? See Scalability Engine Guidelines.

Review the tips for optimizing your deployment.

Balance the load on polling engines by specifying nodes to be polled by individual polling engines.

Manage Additional Polling Engines.

Troubleshoot your SolarWinds Orion database.

NPM licensing model

The SolarWinds NPM license is based on a number of items to monitor. Each license tier number provides the maximum limit of nodes, interfaces, and volumes to manage and monitor.

NPM is licensed according to the largest number of the following types of monitored network elements:

- **Nodes**: any devices being monitored, such as routers, switches, virtual and physical servers, access points, and modems.
- **Interfaces**: any single points of network traffic, such as switch ports, physical interfaces, virtual interfaces, sub-interfaces, and VLANs.
- **Volumes**: any logical disks being monitored.

NPM has the following available license levels:

<table>
<thead>
<tr>
<th>LICENSE</th>
<th>NUMBER OF MONITORED ELEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL100</td>
<td>Up to 100 nodes, 100 interfaces, and 100 volumes (300 elements in total).</td>
</tr>
<tr>
<td>SL250</td>
<td>Up to 250 nodes, 250 interfaces, and 250 volumes (750 elements in total).</td>
</tr>
<tr>
<td>SL500</td>
<td>Up to 500 nodes, 500 interfaces, and 500 volumes (1500 elements in total).</td>
</tr>
<tr>
<td>SLX</td>
<td>Virtually unlimited number of elements. With the default polling interval, one polling engine can monitor a maximum of 12,000 elements. To monitor over 12,000 elements, use additional polling engines (APEs). Each APE requires a license.</td>
</tr>
</tbody>
</table>
Database size increases with the addition of monitored elements.

License NPM with other SolarWinds products

Your NPM license interacts additively with your other SolarWinds licenses.

For example, if you have an NPM SL500 (500 nodes and 500 volumes) installed with SAM AL150, you can monitor:

- 650 nodes (500 NPM nodes + 150 SAM nodes)
- 650 volumes (matching the node count)
- 500 interfaces monitored with SNMP
- 150 component monitors
- An unlimited number of interfaces polled using WMI

To verify the number of consumed and available component monitors in your license, access the NPM License Summary.

1. Log on to the SolarWinds Web Console with an administrator account.
2. Click Settings > All Settings.
3. Click License Details in the Details section.

Review the Orion and NPM details. You can see the current number of monitored nodes, volumes and interfaces and the number of the total number of elements allowed by your license.
Manage and activate your NPM license

During installation, you will be prompted to activate your NPM license. You need the license key located in the SolarWinds Customer Portal. For more information on licensing NPM, see the web-based License Manager information.

Uninstall SolarWinds NPM

Uninstalling products may require uninstalling files and editing registries. For technical assistance, contact Support.

You may need to uninstall SolarWinds NPM to reinstall for resolving issues or to move to a new server during a migration.

Prior to uninstalling, SolarWinds recommends the following preparation:

| ☐ Backup the existing database | To preserve your data, back up your database(s). If you need help with backups, check your vendor’s site for documentation and instructions. |
| ☐ Backup product folders | Create copies and backups of your product folders. You may have customizations in these folders specific to your installations. |

To remove Network Performance Monitor from a server, complete the following steps:

☐ 1. Remove product licenses	Follow the steps for your specific product to remove the SolarWinds product licenses.
☐	1. In the Orion Web Console, select Settings > All Settings > and click License Manager.
☐	2. In the web-based License Manager, select the product license to remove.
☐	3. Click Deactivate. This removes the license activation and server assignment.
☐	With the license deactivated, it is parked, or available but unused.
2. Uninstall SolarWinds products
1. Open Programs and Features in the Windows Control Panel.
2. Select the product(s) to remove one at a time and click Uninstall.

> When you have multiple Orion Platform products installed and are not uninstalling all of them, continue with step 5: restart the server. Deleting SolarWinds folders and registries affects the operation of all Orion Platform products.

3. Delete or rename SolarWinds folders
Delete files from the following locations to fully clear all files. If you installed to a different domain, look on that location instead of C:\.

- C:\Program Files (x86)\SolarWinds
- C:\Program Files (x86)\Common Files\SolarWinds
- C:\inetpub\SolarWinds
- C:\ProgramData\Solarwinds
- C:\ProgramData\SolarWindsAgentInstall

4. Remove specific Registry keys
Important: These steps affect your Registry settings. For assistance, contact Support.

1. Open the command line interface on the server.
2. Type `regedit`, and click OK.
3. Expand `HKEY_LOCAL_MACHINE > Software`.
4. Delete both the SolarWinds and the SolarWinds.net folders.
5. If you are uninstalling from a 64-bit computer, expand `HKEY_LOCAL_MACHINE > Software > Wow6432Node`, and delete both the SolarWinds and the SolarWinds.net folders.

5. Restart and reinstall
Restart the server. You can reinstall new products following this guide.
Manage interfaces

With SolarWinds NPM, you can manage your environment up to the interfaces level.

- View interface status and details about downtime periods
- Detect and predict possible duplex mismatches
- Edit interface properties
- Suspend collecting data for interfaces, or show interface as Unplugged
- Remotely manage monitored interfaces

View interface status, interface health, and details about downtime

The downtime information is useful, for example, for SLA providers who want to prove specific times of interface or port unavailability.

Starting with NPM 12.3, check the health of interfaces in the Health Summary widget and get more details on the Node Details - Interfaces subview.

In some areas, an interface being down does not directly impact Internet or intranet connectivity.

1. Log in to the Orion Web Console.
2. Navigate to the Node Details view.
3. Review the Interface Downtime widget.
 By default, the widget shows the interface status in the last 24 hours, each hour represented as a block in color. This widget is also available on Interface Details views.

 To display downtime for all monitored interfaces on a node, add the Interface Downtime resource on node view.

4. To see a detailed view of a problematic section, position your cursor on the graph.

Change the time period

By default, the Interface Downtime widget displays downtime data for the last 24 hours, one block representing 1 hour. You can display any time frame within the stored history.

1. Go to the Interface Downtime widget, and click Edit.
2. Select Custom in the Downtime Period list, and specify the Beginning and End dates and times.
3. When displaying longer time periods, you might need to change the time frame represented by one block. Select Custom in Display Settings, and provide a time period represented by one block.
4. Click Submit.
Set the retention period for interface downtime history

By default, interface status history is stored in the database for 7 days.

1. Log in to the Orion Web Console as an administrator.
2. Click Settings > All Settings in the menu bar.
3. In the Thresholds & Polling grouping, click Polling Settings.
4. Scroll down to Database Settings, and enter a time to retain interface status history in the database in the Downtime History Retention field. Enter a value in days, from 7 to 60 days.

Disable interface downtime monitoring

Monitoring interface downtime can affect the performance of SolarWinds NPM. To decrease the load, disable interface downtime monitoring. For periods where interface downtime was not monitored, the Interface Downtime resource shows gray blocks.

1. Log in to the Orion Web Console as an administrator.
2. Click Settings > All Settings in the menu bar.
3. In the Thresholds & Polling grouping, click Polling Settings.
5. Click Submit.

SolarWinds NPM does not monitor downtime for the interface any more. The Interface Downtime resource displays the message "Downtime monitoring is disabled. To enable it, go to Polling Settings.

View interface health

1. In the Orion Web Console, go to the Node Details view.
2. On the Summary subview, review the Health Summary widget to get an overview of the status of interfaces on the node.

```
<table>
<thead>
<tr>
<th>Health Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>INTERFACES</strong></td>
</tr>
</tbody>
</table>
```

3. On the Health Summary widget, click a status group number to go to the Interfaces subview, filtered by the selected group status. The Interfaces subview lists monitored interfaces on the selected device, including relevant details, such as in and out utilization, or any errors that happened in the
In the last hour.

Detect and predict duplex mismatches

One of the most common causes of performance issues on 10/100 or 100/1000 Mbit Ethernet links occurs when one port on the link operates at half-duplex while the other port operates at full-duplex.

1. Log into the Orion Web Console.
2. Go to the node details view for the parent node of the interface you want to check for duplex problems.
3. Consult the Possible Duplex Mismatches resource. If there are no errors, the resource is hidden.

 The resource lists all duplex interfaces on the node, the percentage of transmit and receive errors, and the neighboring node and interface. If the neighboring interface or node is not monitored, the appropriate columns are empty.

 The last column displays the duplex mode issue - Mismatch, or Unknown.

Duplex Mismatch

To be able to detect duplex mismatches, your nodes need to meet the following requirements:

- The nodes must be monitored.
- The nodes must be in the up state during the discovery.
- The nodes must support topology and be interconnected.
- Duplex of both devices must be identified as full or half.

The resource shows all duplex mismatches, not only 100% duplex mismatches. These are reported on by the Duplex Mismatch alert.
Possible Duplex Mismatch

If at least one of the link interfaces has the duplex mode defined as half or full, the resource helps you identify possible mismatches.

Possible duplex mismatches are visible in the duplex mode column as the Unknown duplex mode. They are identified in the following cases:

- If the switch port reports more than 0.5% receive or transmit errors.
- If the switch port reports CRC errors.
- If the switch port reports Late Collision errors.

How do I resolve mismatches?

To resolve a duplex mismatch, make sure your hardware is working, and unify the duplex mode configuration on neighboring interfaces.

Troubleshoot duplex mismatches

The Possible Duplex Mismatches does not display on Node Details view

If the resource does not display on the node details view, there might be a performance issue due to the amount of interfaces and topology connections. Check the following logs for mismatch information:

C:\ProgramData\SolarWinds\Logs\Orion\OrionWeb.log

C:\ProgramData\SolarWinds\InformationService\v3.0\Orion.InformationService.log

The Possible Duplex Mismatches resource does not display percentage of errors

Possible causes:

- No statistical data for these interfaces.
- A performance issue connected with getting statistic information for the resource.

Edit interface properties

1. Log in to the Orion Web Console as an administrator.
2. Click Settings > Manage Nodes.
3. Locate the parent node of the interface you want to manage, and expand the parent node.
4. Select the interface, and click Edit Properties.
5. Make your changes:

Edit the interface name

Adjust the interface name.

- In interface names, aliases, or descriptions, use only the following recommended characters:
 - a-z A-Z 0-9 space , . - _ () /
- Do not use \ | : * ?, or angle brackets (< or >). Angle brackets and any strings contained within angle brackets are removed during polling, as bracketed text may be incorrectly parsed as web markup tags.

To display the interface as unplugged rather than down, select Display Interface as Unplugged.

Designate bandwidth for the interface

Default transmit and receive bandwidths are 1000 Mb/s. If a device does not report its bandwidth, or the interface bandwidth is constrained by other network devices, specify a custom bandwidth that reflects the performance of the interface.

Select Custom Bandwidth, and provide values for Transmit and Receive Bandwidth, in Mb/s.

Change polling interval

Edit how often SolarWinds NPM polls the interface status and performance data.

- Interface Status Polling is the interval in seconds between the status checks on the selected interface. By default, interface status is checked every 120 seconds.
- Collect Statistics is the interval in minutes on which performance statistics for the interface are determined. By default, it is every 9 minutes.

Custom properties and dependencies

Provide values for custom properties for the interface, and edit dependencies. See [Creating Custom Properties](#) and [Network object dependencies](#).

Customize alerting thresholds for the interface

You can customize thresholds whose reaching triggers alerts for individual interfaces. You can change alerting thresholds for the following metrics on the interface:

- Received /Transmit Interface Errors and Discards
- Receive/Transmit Interface Utilization

To customize a threshold, select Override Orion General Thresholds next to the metric, and provide values for Warning and Critical Thresholds.

6. Click Submit.

The interface properties in SolarWinds NPM change according to your updates.

Suspend collecting data for interfaces

Monitored interfaces are regularly polled for operational status, and collected statistics are displayed in the Orion Web Console.
Maintenance mode

To temporarily stop collecting data or triggering alerts for interfaces, put the interface or the parent node into a maintenance mode.

1. Go to Manage Nodes, and navigate to the interfaces.
2. Select the interfaces, and select a maintenance mode option:
 - Mute alerts: data for the interface is collected, but alerts do not trigger.
 - Stop collecting data: data for the interface is not collected and alerts do not trigger.
 - Schedule a maintenance period: specify a period of time to stop collecting data or mute alerts for the interface.

The maintenance mode settings change according to your settings. For information about resuming alerts, starting collecting statistics, or editing the scheduled maintenance, see the section on Maintenance Mode for nodes.

Set the interface status as Unpluggable

If you do not want to be notified when an interface is down, you can specify that the interface is Unpluggable. The interface status is reflected in the status of the parent node and in alerts.

1. On the Node Management view, select the interface, and click Edit Properties.
2. Select Display Interface as Unplugged Rather Than Down, and click Submit.

The interface status does not influence the status of the parent node.

Remotely manage monitored interfaces

Using the Node Management utility, you can shut down or enable interfaces, and remotely override configured EnergyWise power settings.

To manage interfaces remotely, the parent node must have not only a Community String, but also the Read/Write Community String set correctly. See Edit polling settings.

1. Log in to the Orion Web Console as an administrator.
2. Click Settings > Manage Nodes.
3. Expand the parent node of the interface.
4. Select the interfaces to manage.
5. To shut down the interfaces, click More Actions > Shut Down, and click OK to confirm.
6. To enable the interfaces, click More Actions > Enable.
7. If the selected interface is EnergyWise-enabled, you can override the current power level setting. Click More Actions > Override Power Level, set the power level, and click OK.

Remote overrides are temporary and reset in accordance with your configured EnergyWise policy for the selected interface. See Temporarily reset the current power level of a monitored EnergyWise interface.
Monitor capacity usage trends on the network and forecast capacity issues

Capacity forecasting is available for the following metrics of nodes, interfaces, and volumes monitored by SolarWinds NPM:

- CPU utilization on nodes
- Memory usage on nodes
- Space usage on volumes
- Receive (in) utilization on interfaces
- Transmit (out) utilization on interfaces

Capacity usage trends are calculated based on historical data. By default, the longest time period taken into account for calculating the capacity forecast is 180 days.

Forecast calculation methods

- **Peak calculation** forecasts trends using daily maximum values. This method is suitable for important devices and connections where it is important to completely avoid reaching a certain usage level (threshold).
- **Average calculation** forecasts trends using daily average values. This method is suitable for non-critical network devices or connections where short periods exceeding the threshold level are acceptable.

For best results, the more historical data up to 180 days are available, the more precise is the calculated forecast.

By default, the forecast calculation method is set globally for all monitored objects. You can also customize the method for individual objects (nodes, interfaces, or volumes).

Requirements

Capacity forecasting is available for nodes, interfaces, and volumes that meet the following requirements:

- The nodes, interfaces, and volumes must be managed in SolarWinds NPM.
- You need to have enough historical data in the database. By default, 7 days of data are required.

Forecast capacity for nodes, interfaces, or volumes

Consult graphs or tables to see usage trends of devices on your network, and find out when the capacity of the devices will be fully used.

Locate pending capacity problems

Consult the Top XX Capacity Problems resource to see a list of objects whose usage trend is rising.
If the resource is not in a view, add it.

View capacity usage trends and forecast in graphs

To see a graphical display of capacity usage trends, go to the details view for the node, volume, or interface, and consult the forecast chart:

- CPU Capacity Forecast Chart
- Memory Capacity Forecast Chart
- Storage Capacity Forecast Chart
- Interface Utilization Receive Forecast Chart
- Interface Utilization Transmit Forecast Chart

View capacity usage trends and forecast in tables

For a brief overview of usage trends for a node, volume, or interface, go to the details view for the object, and consult the resource:

- Node Capacity provides an overview of both CPU load and percent memory usage in the past 6 months, a forecast when the warning and critical thresholds will be exceeded, and when the resource will be fully used.
- Volume Capacity provides an overview of volumes capacity usage in the past 6 months, a forecast when the warning and critical thresholds will be exceeded, and when the volume capacity will be fully used.

Forecasts in this resource are calculated using the default method (peak or average) specified for the resource.

Add capacity forecasting resources

Capacity forecasting resources display only on views for which they are relevant. For example, interface utilization resources can only be added on interface detail views.

1. Log in to the Orion Web Console and go to the view where you want to add the resource.
2. Click Customize Page in the top right corner.
3. Click the + icon on the Customize page, and type "forecast" or "capacity" into the Search field.
4. Select the resource, and click Add Selected Resources.
5. Click Done to add the resource on the view.
6. Click Submit. The resources will now appear on the view.

Change capacity forecasting settings globally

Capacity forecasting settings include the forecast calculation method and thresholds for the metrics. By default, the settings are set globally.

See [Customize capacity forecasting settings for single nodes, interfaces, or volumes](#).
Change calculation method and thresholds for nodes or volumes

1. Click Settings > All Settings, and select Orion Thresholds in the Thresholds & Polling section.

 [Note: If you are in a capacity forecasting resource, click Edit, and click Orion General Thresholds.]

2. Specify values for Critical Level and Warning for the metrics:
 - AVG CPU Load for CPU usage on nodes
 - Disk Usage for volume capacity usage
 - Percent Memory Used for memory usage on nodes

3. For each metric, select the calculation method.
 - Calculate exhaustion using average daily values
 - Calculate exhaustion using peak daily values

4. Click Submit.
 You have changed the method and thresholds for calculating capacity forecast for monitored nodes and volumes.

Change calculation method and thresholds for interfaces

1. Click Settings > All Settings, and select NPM Thresholds in the Thresholds & Polling section.

2. Go to the Interface Percent Utilization section, define the Critical and Warning threshold values for the metric.

3. Select the calculation method:
 - Calculate exhaustion using average daily values
 - Calculate exhaustion using peak daily values

4. Click Submit.
 You have changed the method and thresholds for calculating capacity forecast for monitored interfaces.

Customize capacity forecasting settings for single nodes, interfaces, or volumes

You can set different forecast calculation methods and thresholds for individual nodes and volumes.

For interfaces, the calculation method is set globally, and you can customize only the thresholds.

💡 Set warning and critical thresholds for critical nodes, interfaces, or volumes to lower percentages, so that you have enough time to take measures before capacity issues occur.
Customize capacity forecasting thresholds and calculation methods for nodes:

1. Log in to the Orion Web Console as an administrator.
2. Open the Edit Properties page for the node.
 Go to Settings > Manage Nodes, select the node, and click Edit Properties.

 If you are in a capacity forecasting resource, click Edit, and click the link to the node's Edit Properties page.
3. On the Edit Properties page, scroll down to Alerting Thresholds.
4. Select Override Orion General Thresholds for CPU Load or Memory Usage, and define the Warning and Critical threshold levels.
5. Select the method for calculating trends:
 - Calculate exhaustion using average daily values
 - Calculate exhaustion using peak daily values

 If you want to use baseline thresholds, click Use Dynamic Baseline Thresholds. See Orion baseline data calculation.
6. Click Submit.
 You have changed the method and thresholds for calculating capacity forecast for the node.

Customize capacity forecasting settings for interfaces:

1. Log in to the Orion Web Console as an administrator.
2. Open the Edit Properties page for the interface.
 Go to Settings > Manage Nodes. Expand the parent node, select the interface, and click Edit Properties.

 If you are in an interface capacity forecasting resource, click Edit, and click the link to the interface's Edit Properties page.
3. On the Edit Properties page, scroll down to Alerting Thresholds.
4. Select Override Orion General Thresholds for Receive Interface Utilization or Transmit Interface Utilization, and customize the Warning and Critical threshold levels.

 If you want to use baseline thresholds, click Use Dynamic Baseline Thresholds. See Orion baseline data calculation.
5. Click Submit.
 You have changed the thresholds for calculating capacity forecast for the interface.
Customize capacity forecasting settings for volumes:

1. Log in to the Orion Web Console as an administrator.
2. Go to Settings > Manage Nodes.
3. Select the volume, and click Edit Properties.

 To find the volume, locate the node, and click the + sign to display interfaces and volumes on the node.

4. Select Override Orion Capacity Thresholds for Percent Disk Usage.
5. Customize the Warning and Critical threshold levels.
6. Select the appropriate method for calculating trends:
 - Use Average values
 - Use Peak values
7. Click Submit.

 You have changed the method and thresholds for calculating capacity forecast for the volume.
Discover your network paths

SolarWinds NPM 12.0 introduced a new feature called NetPath™. NetPath™ helps you identify network problems faster by automatically creating a map of the problem area, and enriching it with a wide variety of supporting information. NetPath™ displays the performance details of devices inside and outside of your network.

Key features of NetPath™

- NetPath™ discovers the node-by-node network path.
- NetPath™ quantifies the performance of each link and node along the path.
- NetPath™ isolates the node or connection that is decreasing end-to-end performance.
- If the issue is external, NetPath™ identifies the name of the company that owns the node and displays their contact information.
- If the issue is internal, NetPath™ incorporates data from SolarWinds NPM, NCM, and NTA about your on-premises gear.

How does NetPath™ work?

NetPath™ uses distributed monitoring and path analysis to discover how applications are delivered through the network to your users. To use NetPath™:

1. You deploy agents on Windows computers that act as synthetic users. The agents use advanced probing to discover and test the network path that traffic takes to any network endpoint, such as your local file print server, your website, or external websites.

2. After discovering the path and quantifying the performance of each node and connection, NetPath enriches the picture with additional data about Internet nodes. If you are monitoring non-Internet nodes with Orion, NetPath™ incorporates that data too.
3. The result is a clear end-to-end map of how applications are delivered to your users, including your network, the network of your provider, and any other networks you depend on.

NetPath™ answers the following questions:

- How well is my network delivering applications to my users?
- Are the paths to key applications or users down?
- Where is the network problem and who is responsible for it?

NetPath requirements

Probe computer

Probes are the source of network paths, and the paths are discovered by probes.

You can [create a probe](#) on a source computer, which must meet the following requirements:

<table>
<thead>
<tr>
<th>Type</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating system</td>
<td>Windows Server 2008 R2 SP1</td>
</tr>
<tr>
<td>(64-bit only)</td>
<td>Windows Server 2012</td>
</tr>
<tr>
<td></td>
<td>Windows Server 2012 R2</td>
</tr>
<tr>
<td></td>
<td>Windows Server 2016</td>
</tr>
<tr>
<td></td>
<td>Windows 7</td>
</tr>
<tr>
<td></td>
<td>Windows 8</td>
</tr>
<tr>
<td></td>
<td>Windows 8.1</td>
</tr>
<tr>
<td></td>
<td>Windows 10 Professional and Enterprise</td>
</tr>
<tr>
<td></td>
<td>([i] Windows 10 Home edition is not supported.)</td>
</tr>
<tr>
<td>CPU cores</td>
<td>2 CPU cores for 20 paths</td>
</tr>
<tr>
<td></td>
<td>+1 CPU core per 10 additional paths</td>
</tr>
<tr>
<td>Hard drive space</td>
<td>1 GB</td>
</tr>
<tr>
<td>RAM</td>
<td>2 GB</td>
</tr>
</tbody>
</table>

Orion integration

NTA 4.2 and NCM 7.4.1 are the minimum required versions to use the [Orion integration features with NetPath](#).
Ports

Open the following ports on your firewall for network connectivity used by NetPath™.

You may also need to open other ports:

- **NPM ports** for communication between polling engines.
- **Agent ports** when deploying probes on remote machines using agents.

<table>
<thead>
<tr>
<th>PORT</th>
<th>PROTOCOL</th>
<th>SERVICE OR PROCESS</th>
<th>DIRECTION</th>
<th>SOURCE</th>
<th>DESTINATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 (ICMP Time Exceeded)</td>
<td>ICMP</td>
<td>SolarWinds Agent or JobEngineWorker</td>
<td>Incoming</td>
<td>Networking devices along your path</td>
<td>NetPath™ probe</td>
<td>Used by the NetPath™ probe to discover network paths.</td>
</tr>
<tr>
<td>User configured</td>
<td>TCP</td>
<td>SolarWinds Agent or JobEngineWorker</td>
<td>Outgoing</td>
<td>NetPath™ probe</td>
<td>Endpoint service</td>
<td>Any ports of the monitored services that are assigned to the probe. Used by the NetPath™ probe to discover service status.</td>
</tr>
<tr>
<td>43</td>
<td>TCP</td>
<td>SolarWinds.Business-LayerHost (Main server only)</td>
<td>Outgoing</td>
<td>Main polling engine</td>
<td>BGP data providers and announcements, such as:</td>
<td>Used by NetPath™ to query BGP information about the discovered IP addresses.</td>
</tr>
<tr>
<td>443</td>
<td>TCP</td>
<td>SolarWinds.Business-LayerHost (Main server only)</td>
<td>Outgoing</td>
<td>Main polling engine</td>
<td>BGP data providers and announcements, such as:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• http://whois.arin.net/ui/</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• https://stat.ripe.net/</td>
<td></td>
</tr>
</tbody>
</table>
Database storage

When calculating the size requirements in SQL Server for NetPath™, you must account for the probing interval and the complexity of the network path from the probe to the monitored service. The complexity of the path is divided into three groups:

- Internal: services with fewer than 10 nodes between the probe and the monitored service.
- Complex: multiple paths (over 20) ending in multiple endpoint nodes. Examples are google.com and yahoo.com.

This table provides an estimate in megabytes (MB) of the amount of storage consumed by SQL Server over a 30-day period (the default retention time) when monitoring a single service.

<table>
<thead>
<tr>
<th>INTERVAL (IN MINUTES)</th>
<th>INTERNAL (IN MB)</th>
<th>INTERMEDIATE (IN MB)</th>
<th>COMPLEX (IN MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>520</td>
<td>1105</td>
<td>1615</td>
</tr>
<tr>
<td>2</td>
<td>325</td>
<td>645</td>
<td>1145</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>445</td>
<td>915</td>
</tr>
<tr>
<td>4</td>
<td>170</td>
<td>350</td>
<td>750</td>
</tr>
<tr>
<td>5</td>
<td>135</td>
<td>265</td>
<td>480</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
<td>175</td>
<td>470</td>
</tr>
</tbody>
</table>

Example storage requirement calculation

Your monitoring setup contains the following:

- Five internal monitors with a one-minute interval.
- Three intermediate monitors with a five-minute interval.
- Four complex monitors with a ten-minute interval.

The total storage requirement for SQL Server can be calculated as:

\[(5 \times 520) + (3 \times 265) + (4 \times 470) = 5275\] MB over a 30-day time period.
Cloud environment

When you place a probe in a public cloud, consider the following additional requirements:

<table>
<thead>
<tr>
<th>PROVIDER</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
</table>
| Amazon | - Security group must be enabled on instances that host NetPath™ probes to allow inbound ICMP packets.
- Probing services that host on Amazon Web Services (AWS) instances within the same cloud networks may not work. |
| Azure | - Private Internet Protocol (PIP) must be enabled on instances that host NetPath™ probes.
- Probing may work within VNET, but may not work if the path crosses the Azure Load Balancer. |

Scalability

The scalability of NetPath™ depends on the complexity of the paths you are monitoring, and the interval at which you are monitoring them.

In most network environments:

- You can add up to 100 paths per polling engine.
- You can add 10 - 20 paths per probe.

NetPath™ calculates the recommended path count based on the performance of each probe, and displays it each time you deploy a new path to the probe.
Create a service

A service is the destination to which you are mapping. It represents an application, and SolarWinds recommends deploying a service for the most important applications that your users rely on. This can be any TCP-based network service, such as salesforce.com, Microsoft Exchange, Office365, or a file server.

NetPath™ services are monitored by probes. Orion automatically installs a probe on each polling engine, and you can install a probe on any Windows computer. No other software is required on the path.

Create a new service

1. Click My Dashboards > Network > NetPath Services.
2. Click Create New Service.
3. Enter the service details of the target destination of your network path. The service must be TCP-based.
 a. Enter a host name or IP address and port.

 SolarWinds recommends using the same information that your users access the application by. For example, if they access your internal site by a host name rather than an IP address, enter the host name in NetPath™. That way NetPath™ gets the same service as your users.

 b. Enter the probing interval in minutes.

 SolarWinds recommends starting with a 10-minute interval. See the Probing interval section below to learn how to adjust the probing interval.

 c. Click Next.
4. Select an existing probe from the list, or Create a probe to use a new source.
5. Click Create.

Probing interval

This value determines how often and how long information is polled from the network path. If the value is too low, NetPath™ does not complete the probe and the network path may not show all routes. If the value is too high, the information may not update as frequently as you like.

- If you probe more frequently, the data updates quicker but accuracy is lost. If this happens, NetPath™ identifies it as an issue on the probe displayed in the graph.
- If you probe less frequently, the data updates more slowly but the accuracy of the data increases.

SolarWinds recommends starting with a probing interval of 10 minutes, which is appropriate for most paths. You can adjust the value from there to suit your needs.

Is your network path internal? Does it contain fewer than 10 nodes? If so, you can decrease the interval for more frequent data updates.
Is your network path external and does it contain internet connections? Does it contain more than 10 nodes? If so, you can increase the interval for less load strain on the Orion server, your nodes, and the network. A larger value also saves storage space by writing less NetPath™ data to the database.

Create a probe

NetPath™ services are monitored by probes. Orion automatically installs a probe on each polling engine, and you can install a probe on any Windows computer. No other software is required on the path.

A probe is the source you are testing from. It is always the start of the path. Think of a probe as a representative of a user. SolarWinds recommends deploying probes where you have users, for example at each of your office locations.

The probe must be a Windows computer.

Create a probe

You can create a probe when you create a service, or while assigning an additional probe after you create the service:

1. Click My Dashboards > Network > NetPath Services.
2. Click next to an entry in the NetPath Services list.
3. Click Create New Probe.
4. Enter the required information on the Create New Probe window.

Enter the credentials that can be used to log in to the computer and install the software.

5. Click Create.
6. Select the probe from the list.
7. Click Assign.

Assign additional probes

Click next to an entry in the NetPath™ Services list to assign another probe to the service.

Probe troubleshooting

If you are creating a probe on an existing Orion Agent, you must enter the primary polling IP address used by Orion for that device.

Check the probe status

If you have other issues with probe deployment, you can check the probe status.
Probes are listed in the Manage Agents section of Agent Management. The NetPath™ probe relies on the Agent infrastructure built into Orion and used for things like QoE and SAM Agents. NetPath™ is an additional plugin in this agent framework.

1. Click Settings > All Settings.
2. Under Node & Group Management, click Manage Agents.
3. Locate the probe in the Agent/Node list by its host name, and select it.
4. Verify the Agent Status is Running, and that the Connection Status is Connected.
5. Click More Actions > View installed agent plugins.
6. Verify the NetPath™ Agent Plugin is installed.

You can also click Edit Settings to change the configuration of the probe, or Delete to remove it.

View a network path

1. Click My Dashboards > Network > NetPath Services. This view displays a list of created network services.
2. Expand a service, and click one of the associated probes to see the network path from that probe to the expanded service.

Path layout

The source is on the left and the destination is on the right. The network path is everything in the middle.
Use the controls in the upper left to change the zoom, detail levels of the path, and the amount of information displayed. You can also use your mouse to pan and zoom.

Objects in the network path include nodes, connections, and interfaces. Point to an object for a summary, and click it for details.

NetPath™ groups nodes into networks represented as larger circles. In the example below, the path goes through two (2) nodes in T-Mobile's network and 38 (38) nodes in Google's network.

Click the network to show the nodes that comprise it, and click the X on the Expanded filter to collapse it.
The node information is cumulative from the source to that node. When you point to or click a node, the displayed metrics answer the question, “what is the performance between the source, along the path, up to this node?”

A connection between nodes shows latency and packet loss between its two nodes. When you point to or click a link, the displayed metrics answer the question, “what is the performance of this specific link?”
A dotted line illustrates a broken connection to a host that is unreachable. This means that traffic reached the green node, is destined for the endpoint connected with the dashed line, but does not make it.

![Network Diagram](image)

Ec2-54-246-123-138. eu-west-1.compute.amazonaws.com

Use the green, yellow, and red color coding to identify the nodes and connections that may be performing poorly and affecting the end-to-end connection. If you confirm that a service provider is responsible for the outage, you can contact them to resolve the issue.

Path history

The chart on the bottom shows metrics for the end-to-end performance. Select an interval to see the network path and its performance that resulted in that end-to-end performance.

Think of this as your network time machine. You can compare performance metrics from today or a previous time.

![Path History Chart](image)

Available actions in the path history

- Click a bar in the chart to load the network path from that date and time.
- Click the single arrows, or press the Left and Right Arrow keys, to move one interval at a time.
- Click the double arrows to move to the beginning or the end of the displayed history window.
- Drag the bottom slider to change the history window.
Click Path History to show or hide Latency and Packet Loss in the chart.

Troubleshoot a service with external path data

You can use NetPath™ to diagnose a slow connection to an external service. This example uses amazon.com.

1. Click My Dashboards > Network > NetPath Services.
2. Expand the service that your users reported as slow or unreachable.
3. Click the probe from the office or location that reported the issue.
4. Under Path History, locate the date and time for when your users reported the issue. Here, there is a yellow warning entry at 5:09 p.m. on April 20.
5. Click the yellow bar at 5:09 p.m. in the chart.
6. The problem is in Amazon's network. Click the red Amazon node to expand it.

7. Although Amazon's network is large and complex, you should investigate the red and yellow areas.

8. Click the red connection between the two nodes to open the inspector panel.
9. Expand the Issues section to see that packet loss is over the critical threshold, and that it is 17% likely that transit passed through this link.

![Issues](image)

10. Click the red 205.251.244.209 node to open the inspector panel.

11. Use the phone number or email address to contact the service provider and report the issue. Present the following information to resolve the issue:

 - IP addresses of the nodes in question (54.239.111.33 and 205.251.244.209 in this case)
 - Date, time, and duration of the performance issue
 - Latency and packet loss information

Troubleshoot my network with Orion path data

You can use NetPath™ to diagnose a slow connection caused by your internal network. This example shows a node that stopped working properly after a change to its config file.

1. Click My Dashboards > Network > NetPath Services.
2. Expand the service that your users reported as slow or unreachable.
3. Click the probe from the office or location that reported the issue.
4. Under Path History, locate the date and time for when your users reported the issue. Here, there is a red critical entry at 3:26 p.m. on April 14.

5. Click the red bar at 3:26 p.m. in the chart.

6. The problem is in the internal network. There is a high latency between nodes R3 and R5.
7. Point to the red connection between the two nodes to see that Transit Likelihood is 45%. This means that just under half of your users are likely to experience the problem.

8. NCM is installed, so the [Orion integration with NetPath](#) displays information about a config change to node R5. Click the Config Change notification.
9. In the config comparison window, scroll down until you see the highlighted change.

```
72
73  interface Ethernet1/0
74  ip address 10.0.35.5 255.255.255.0
75  ip flow ingress
76  ip flow egress
77  duplex half
78
79  !
```

10. A new command was added on line 78 for `interface Ethernet1/0`. This is the problem. Note the change, and close the config comparison window.

11. Use NCM to revert the config file, or log in to the device and remove the incorrect configuration.

Orion integration with NetPath

NPM integration

NetPath™ is a feature of NPM, and by default displays NPM data and issues.

On the internal portion of the network path, you can:

- See NPM data such as CPU, RAM, interface utilization, and more included in the graph.
- Click a monitored device and go to its Node Details page.
- Click an unmonitored device and add it to Orion to see more data.

NTA integration

NetPath™ uses data from NPM to display information about your internal nodes on the network path, such as bandwidth used for the interface. But what is using that bandwidth?

NetPath™ and NTA integration requires NTA 4.2 or later.

If you are exporting flow data from those nodes and monitoring it with NTA, NetPath™ displays additional information to identify what is using the most ingress and egress bandwidth.

Click the node or interface in the network path to open the inspector panel, where you can:

- View the top three conversations.
- Select ingress or egress.
- Click a conversation name to view details about that conversation.
NCM integration

NetPath™ displays additional information about NCM nodes with backed-up config files. If traffic through an NCM node was affected after a config change, NetPath™ notifies you that the two events may be correlated.

NetPath™ highlights config-related issues on the path, and provides quick access to the configuration data for nodes on the path.

Click the node in the network path to open the inspector panel, where you can:

- Click Commands > View Current to see the config for the device.
- Click Commands > Compare to see two configs side by side for comparison.
Monitor Cisco ACI devices

Thanks to the broad coverage of Cisco OIDs, you can poll many statistics for hardware components that make up ACI, such as Nexus leaf and spine switches, already with NPM 12.3.

Starting with NPM 12.4, you can enable API polling on ACI devices to monitor the following components of your SDN environment:

- Tenants
- Application profiles
- Endpoint groups
- Spine and leaf switches

To get the best coverage of your ACI environment, enable the API polling on one of your APICs and add leaf and spine switches to NPM as SNMP nodes. To find out how to configure SNMP in APICs, see the Cisco document [Configuring SNMP in APIC](https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/mib/guide/b_Cisco_ACI_MIB_Quick_Reference/b_Cisco_ACI_MIB_Quick_Reference_chapter_01.html) © 2018 Cisco and/or its affiliates, obtained from https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/1-x/mib/guide/b_Cisco_ACI_MIB_Quick_Reference/b_Cisco_ACI_MIB_Quick_Reference_chapter_01.html on October 17, 2018.

To monitor ACI-specific information, complete the following steps:

- Add an APIC node to NPM for monitoring, or enable ACI monitoring on an APIC node that is already monitored with NPM.
- View members and their health scores on the device.
- View health score history in PerfStack
- View ACI environment on Orion Maps

Requirements

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPM 12.4</td>
<td></td>
</tr>
<tr>
<td>ACI credentials</td>
<td>Cisco API Rest credentials for collecting health scores on ACI entities. REST API must be accessible from the main or additional polling engine server (depending on the polling engine used to poll the node)</td>
</tr>
</tbody>
</table>
Add ACI devices and enable ACI polling

Add ACI devices for monitoring. If you have multiple APIC nodes in your ACI system, you can monitor all APIC nodes with NPM to collect health and performance data.

To collect health scores for your ACI environment, enable ACI polling on one of the APIC nodes. Each APIC has a full view of the ACI environment, and enabling ACI polling on multiple nodes thus results in polling and storing redundant information.

You need Node Management Rights. See Define what users can access and do.

1. Select an APIC to poll for ACI details.
2. Click Settings > All Settings, and click Add Node in the Getting Started grouping.
3. Enter the IP address for the device.
4. Select Most Devices: SNMP and ICMP as the polling method.
5. Scroll down to Additional Monitoring Options, and select Poll for Cisco ACI.
6. Provide the credentials for accessing the Cisco APIC REST API on the device, and click Test Credentials.

7. Complete the Add Node wizard.

NPM now polls health scores for devices linked to the APIC, and calculates the ACI status based on the polled health score.
Enable polling for Cisco ACI on a monitored node

When the Cisco ACI devices are already monitored in SolarWinds NPM, make sure polling for ACI is enabled only on one of the APICs. Consider enabling ACI polling on the node with the least load or with the shortest response time.

Polling for Cisco ACI is used to collect health scores for ACI entities.

1. Click Settings > Manage Nodes.
2. Select the node, and click Edit Properties.
3. Enable Cisco ACI polling.
4. Click Submit.

Now you can see the Members subview with health score information for tenants and blades on the monitored device.

View health scores for ACI members

1. In the Orion Web Console, go to the ACI node details view.
2. Click the Members subview.

The Members subview displays the following items:

- Name
- Distinguished name
- Member type together with the type-specific icon
- Health score

ACI status uses thresholds defined on the APIC. The following table lists the default thresholds.

<table>
<thead>
<tr>
<th>Health Score</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-50</td>
<td>critical</td>
</tr>
<tr>
<td>51-90</td>
<td>warning</td>
</tr>
<tr>
<td>91-100</td>
<td>up</td>
</tr>
</tbody>
</table>

You can automatically display APIC members on the node on Orion Maps. Click the Map icon below in the navigation bar below the Members subview.
Use a part of the distinguished name to see child entities on a certain level (tenants or application profiles).

View health score and status history in PerfStack

Click a health score to open this metric as a new Performance Analysis Dashboard. In the PerfStack, you can see the health score and status of the ACI entity, including historical data.

View your SDN infrastructure on Orion Maps

1. Go to the Node details for APIC view, and click the Map subview. The map shows only the node.
2. In the Inspector panel on the left, select the ACI APIC for the node and click Apply to add it to the map.
The APIC is added to the map. It represents the gate to the logical layer on your ACI.

3. Select the ACI APIC on the map. The Inspector panel populates with all members on the APIC.

4. Select the members in the Inspector panel, and click Apply to add them to the map. The members appear on the map.

You can now select entities or connections to display more details in the Inspector panel. Use the buttons on the map to apply different layouts, zoom in/out, center the map or extend it to the full screen. See Orion Maps for more details.

5. To keep the map, save the objects as a group.
 a. Click Save > Save As New Group.
 b. Provide a name for the group.

 The group is created and the Group Details view opens.

You can access the map at any time:
 a. Click My Dashboards > Groups, and then click the group name in the All Groups widget.
 b. When on the Group Details view, click the Map subview.
Monitor ASA firewalls with NPM

Network Insight for Cisco® ASA automates the monitoring and management of your Cisco ASA infrastructure to provide visibility and help ensure service availability.

Ensure that services dependent on your firewall are available:

- **Monitor VPN tunnels**: to guarantee the connectivity between sites. Monitor the tunnel status, bandwidth usage, and information about completed phases. View user sessions on remote access tunnels.
- **Monitor firewall high availability health and readiness**: detect failovers, and keep track of ASA high availability status.

To have the complete visibility into the health and performance of your firewall infrastructure, and to automate operational activities, such as optimizing your Access lists (ACL), install Network Configuration Manager version 7.7.

Out-of-the-box alerts

- Failover on ASA node
- High Availability on ASA Node is not up
- VPN Site-to-Site tunnel down
- Connections in use exceeding threshold on ASA node

Out-of-the-box reports

- VPN Site-to-Site Tunnel History - Last 30 Days
- VPN Remote Access Tunnel History - Last 30 Days

Next steps

- [Set up monitoring Cisco ASA firewalls](#)

Set up monitoring Cisco ASA firewalls

Data for monitoring Cisco® ASA firewalls is polled by a combination of SNMP and CLI polling. To get accurate ASA-specific information, add the firewall device to NPM as a node, and provide CLI credentials.

What does CLI polling provide?

Enable CLI polling to receive additional ASA-specific details, and to display accurate information for your Cisco ASA devices.

For example, when polling Site-to-Site VPN tunnels, CLI polling helps filter data polled through SNMP, and display only relevant results. Without CLI polling, you might see failed access attempts from outside as failed tunnels.
Information polled by CLI

- Security level and standby IP address for interfaces
- Number of failed connections per minute on the ASA
- High availability details:
 - Configuration sync state
 - Connection sync state
 - Standby state
 - High availability mode
 - Last failover date and time
 - System HA type and system HA role
 - Peer interfaces
- Firewall mode, serial number, and contexts on the ASA device
- All configured Site-to-Site tunnels on the ASA, including inactive tunnels
- For Site-to-Site tunnels, local IP address, local host name, remote IP address, and remote host name

Requirements

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco ASA version</td>
<td>Cisco ASA 8.2 and later</td>
</tr>
<tr>
<td></td>
<td>☐ Cisco ASA Services Modules are not supported.</td>
</tr>
<tr>
<td>ASA user account</td>
<td>Credentials for logging into the ASA device</td>
</tr>
<tr>
<td>Enable password</td>
<td>Credentials for polling CLI details. Without this password, you can access the ASA, but cannot poll it.</td>
</tr>
<tr>
<td>SSH port</td>
<td>By default, port 22. Open an SSH port for accessing and polling ASA devices through SSH.</td>
</tr>
</tbody>
</table>

Add ASA firewalls using CLI credentials

| ☐ You need Node Management Rights. See Define what users can access and do. |

1. Click Settings > Manage Nodes, and then click Add Node.
2. Enter the IP address for the device.
3. Select Most Devices: SNMP and ICMP as the polling method, and enter SNMP credentials.
4. Enable CLI monitoring:
 a. Scroll down to the Cisco Nexus or ASA device section.
 b. Select Enable CLI Polling, enter the credentials, and click Test.

5. To use a specific device template, select it. Device templates are sets of commands you can execute on a device. See NCM Getting Started Guide for more information.

6. Complete the Add Node wizard.

You can now view the polled ASA firewall information in NPM.

Enable CLI polling on monitored devices

To poll firewall-specific data on ASA devices already monitored in SolarWinds NPM, enable CLI polling for ASAs.

 1. On the node details view, click Edit Node in the Management resource.
 2. Scroll down to the Cisco Nexus or ASA device section.
 3. Select Enable CLI Polling, enter the credentials, and click Test.
 4. Click Submit.

You can now poll firewall-specific information, such as platform, interface and tunnel details. Pollers for ASA Network Insight are enabled.

Troubleshoot CLI polling

If CLI polling has issues, verify the following:

 • You have enabled CLI polling on the ASA device.
 • You are using the correct user credentials to log in to the ASA device.
- You are using the correct password for CLI access.
- You have enabled Cisco ASA NetInsight pollers:
 a. On the node details view, click List Resources in the Management resource.
 b. Expand Cisco ASA NetInsight, and select to enable the pollers.

![List Resources - ASAa](image)

- Enable the CLI session trace to extend logging:
 a. Click Settings > All Settings > CLI Settings in the Product Specific grouping.
 b. Click Enable Session Tracing, and click Submit.

Review the session trace files located at:

%ALLUSERSPROFILE%\Application Data\SolarWinds\Logs\Orion\CLI\Session-Trace

Understand ASA platform health

Understand the health of the Cisco® ASA platform, for example power supplies, ASA high availability status, and other platform-wide health attributes.

1. Log in to the Orion Web Console.
2. On the Summary view, locate your ASA firewall node, and click it to go to the Node Details view.
3. Review the Node Details for ASA - Summary subview.
The Summary only displays widgets relevant for the ASA device.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Review the node details, such as firmware version, or IP address.</td>
</tr>
<tr>
<td>2</td>
<td>See the load summary on the device - average percent memory used, average CPU load, and connections in use.</td>
</tr>
<tr>
<td>3</td>
<td>Click Performance Analyzer to open the Performance Analysis dashboard for the ASA node and view predefined metrics.</td>
</tr>
<tr>
<td>4</td>
<td>Review the hardware health and high availability status. Click See details to go to the Platform overview, and see more information about High Availability. Hardware health information is displayed only if it is available on the device.</td>
</tr>
<tr>
<td>5</td>
<td>See the top 3 Site-to-Site VPN tunnels. How do I add tunnels to this resource?</td>
</tr>
<tr>
<td>6</td>
<td>Review the In and Out bandwidth of favorite interfaces. How do I add interfaces here?</td>
</tr>
<tr>
<td>7</td>
<td>See the basic health overview of monitored Site-to-Site tunnels.</td>
</tr>
</tbody>
</table>
4. Click the Platform subview to see more details about the ASA platform health, such as ASA high availability status, RAM and CPU status, connections, and connection rates.

1. Review the node details, such as firmware version, or IP address.

2. Review the RAM and CPU utilization of the device.

3. Review the node and ASA high availability status.

4. Review the number of connections in use over a time period.

5. Review the number of failed connections over a time period.

What other aspect of the ASA platform are you interested in?

- Contexts
- ASA high availability
- Interfaces
- Site-to-Site VPN
Monitor contexts

If you have configured contexts on a monitored ASA device, they are listed in the Contexts widget, or resource on the Node Details for ASA - Summary view.

To add a context configured on a monitored ASA device, click the Monitor Node link and add the context to NPM using CLI credentials. NPM provides the same monitoring details as for other ASA nodes.

Each monitored context requires a node license.

To monitor a context without monitoring the ASA device, add the context to NPM using CLI credentials.

- Monitoring an Administrator context also lists other configured contexts in the widget.
- Monitoring a non-Administrator context only gives you information about the context.

Monitor high availability for Cisco ASA devices

On the Node Details for ASA - Summary, review the high availability information in the Platform Summary resource to help monitor your ASA devices.

Click the See details link, and view the High Availability widget on the Platform subview.

ASA node statuses

See the node status options for ASA devices.
The color of the circle indicates the node status.

<table>
<thead>
<tr>
<th>ICON</th>
<th>DESCRIPTION/ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>![green_circle]</td>
<td>The node is up and running.</td>
</tr>
<tr>
<td>![yellow_circle]</td>
<td>The node's status is Warning. The node did not respond to a ping request and is fast-polled for 120 seconds.</td>
</tr>
<tr>
<td>![grey_circle]</td>
<td>The node is not monitored in NPM. For details, see Troubleshoot Unknown nodes. Add the node as monitored to get details about the node, such as the node name.</td>
</tr>
<tr>
<td>![red_circle]</td>
<td>The node is down. The node did not respond during the fast-poll period of 120 seconds.</td>
</tr>
</tbody>
</table>

Labels next to the icons tell you what type of ASA high availability is configured, and the role of individual nodes:

- Standby/Active
- Primary/Secondary

ASA high availability statuses

NPM polls the following high availability statuses on ASA devices. NPM orders the statuses according to importance with device issues listed first.

- **Standby ready (up, down, or unknown)**

 ASA devices (active and standby) see each other and agree that the standby ASA is ready for failover.

- **Configuration state (up, down, or unknown)**

 If the Configuration state is synced, both ASA devices report that the configuration is synchronized.

 If the Configuration state is not synced, ASA devices report that the configuration is not synchronized. If you have NCM installed, click to see the configuration difference.

- **Connection state sync (up, down, or unknown)**

 State - synced means that both ASA devices report that the high availability state is synchronized.

The overall high availability status is indicated by the color of the line:

- Critical status (red): the Standby ready status is down, and the Configuration state and Connection sync are not relevant.
• Warning status (yellow): the Standby ready status is up, and Configuration and Connection states are either down or unknown.
• Up (green): the Standby ready status is up, and the other states are either up or unknown.
• Unknown (gray): the Standby ready status is unknown, and the other statuses are either up or unknown.

Monitor interfaces

Review the Bandwidth widget, or resource, that shows the traffic going through your favorite interfaces, and then click the Interfaces subview.

If the Bandwidth widget is empty, you have no favorite interfaces. Specify up to three favorite interfaces.

NPM labels interfaces with the `nameif` attribute that reflects the interface function.

To add an interface to widgets on the Summary Page, click the star for the interface.

Select favorite interfaces and Site-to-Site VPNs for the Summary subview

Specify important interfaces and Site-to-Site VPN tunnels as favorite objects, and keep track of their status directly from the Node Details for ASA - Summary view.

1. For VPN tunnels, click the Site-to-Site VPN subview.
2. For interfaces, click the Interfaces subview.
3. Click the star for objects you want to see on the Summary subview. You can have up to three favorite interfaces and up to three favorite VPN tunnels.

The interfaces with stars are displayed on the Bandwidth widget and VPN tunnels with stars are displayed on the Favorite Site-to-Site VPN resource.
Monitor VPN tunnels on ASA firewalls

Get basic visibility to your nodes so that you can troubleshoot tunnels with issues.

1. Log in to the Orion Web Console.
2. On the Summary view, locate and click your ASA firewall node to go to the Node Details view.
3. Click the Site-to-Site VPN or remote access VPN subview.

Site-to-Site VPN

Site-to-Site VPN provides information about office-to-office tunnels.

Review the list of Site-to-Site VPN tunnels on the ASA device. Use the search and filter options to find a Site-to-Site VPN tunnel and see more details.

Click the star icon to add a Site-to-Site VPN tunnel to favorites that are featured on the Node Details for ASA - Summary view.

Status information

- If the tunnel is down, see the information about the last phase completed successfully.
- For up tunnels, see the encryption, hashing info, in and out traffic, and the duration of the tunnel.

Remote access VPN

On the Remote access VPN subview, you can see a list of remote access tunnels, with the user name and tunnel duration details.

Search for tunnels, or filter results to find specific tunnels.

Filter the connection status: connected, or disconnected.
Review access lists on ASA firewalls

To monitor access lists and access the ACL subview, you need NCM 7.7 installed.

See what ACLs are applied to what interfaces and review those ACLs.

1. Log in to the Orion Web Console.
2. On the Summary view, locate and click your ASA firewall node to go to the Node Details view.
3. Click the Access Lists tab.

If you have NCM installed, you can compare the configuration of access lists. Click Compare ACL to go to the NCM resource.

Why is heat count 0?

Heat count informs you how many times an access list rule is applied.

Heat count 0 might have the following reasons:

- The rule is contained in another rule.
- The rule is a duplicate of another rule.
- The IP address was not used in the past month.

If a rule has heat count of 0, take a look at your environment and consider deleting or rewriting it.

Object groups

Object groups are groups created and configured in the Cisco management user interface, and displayed in the Orion Web Console. These groups can summarize IP addresses or any other objects.
Monitor Cisco Nexus devices

With Network Insight for Cisco® Nexus, you can monitor the health and performance of your Nexus devices, view configured virtual Port Channels (vPCs) and their peer vPCs.

Starting with NPM 12.3, the Node Details view for your Nexus devices includes a new Interfaces subview and Nexus-relevant VPCs subview.

To have the complete visibility into the health and performance of your Nexus switches, and to automate operational activities, install Network Configuration Manager version 7.8.

Out-of-the-box alerts for Nexus devices

- vPC on Nexus node is not up

Learn more

- Set up monitoring for Cisco Nexus devices
- View information relevant for Nexus devices (interfaces and vPCs)
- Troubleshoot monitoring for Nexus devices

Set up monitoring for Cisco Nexus devices

Data for monitoring Cisco® Nexus switches are polled by a combination of SNMP and CLI polling. To get accurate Nexus-specific information, add the device to NPM as a node, and provide CLI credentials.
What does CLI polling provide for Nexus devices?

Enable CLI polling to receive additional details about virtual port channels (vPC), and to display the list of vPCs for your Nexus devices.

Information polled by CLI

- vPCs on the device and their status
- peer vPCs
- keep-alive links
- related interfaces

You can provide the CLI credentials in the last step of the Add Node wizard when adding a Nexus node, or on the Edit Node page.

Requirements for Network Insight for Cisco Nexus devices

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>DETAILS</th>
</tr>
</thead>
</table>
| Cisco Nexus versions| 5,000 Series
| | 7,000 Series |
| Nexus configuration | The vPC feature must be configured.
| | To verify that you have vPCs configured, run the following command on the device:
| | `show vpc brief`
| | If the command doesn't list any vPCs, you need to configure them.
| | NPM doesn't display vPC peer links. If the command lists only vPC peer links, adjust the configuration to include vPCs. |
| Nexus user account | Credentials for logging into the Nexus device. |
| Enable password | If you have configured an enable password, you need to provide it. |
| SSH port | By default, port 22.
| | Open an SSH port for accessing and polling Nexus devices through SSH. |

Add Nexus devices for monitoring

1. Click Settings > Manage Nodes, and then click Add Node.
2. Enter the IP address for the device.
3. Select Most Devices: SNMP and ICMP as the polling method, and enter SNMP credentials.
4. Enable [CLI monitoring](#):
 a. Scroll down to the Cisco Nexus or ASA device section.
 b. Select Enable CLI Polling, enter the credentials, and click Test.

![Image showing CLI configuration](image)

Enter a user name and password for logging into the ASA or Nexus device. If you have configured a security password for CLI polling on the device, provide it in Enable password.

5. To use a specific [device template](#), select it. See [NCM Getting Started Guide](#) for more information.

6. Complete the Add Node wizard.

NPM now polls the Nexus-specific information.

Enable CLI polling on monitored devices

To poll vPC data on Nexus devices already monitored in SolarWinds NPM, enable CLI polling.

1. On the node details view, click Edit Node in the Management resource.
2. Scroll down to the Cisco Nexus or ASA device section.
3. Select Enable CLI Polling, enter the credentials, and click Test.
4. Click Submit.

You can now poll device-specific information, such as vPCs. The node details view for your Nexus devices includes the vPC subview listing all vPCs with their member ports.

Troubleshoot monitoring Cisco Nexus devices

Verify the following:

- The node or interface is monitored in NPM.
 - If your vPC is configured, NPM can see that it has a peer. There are no details about the peer node. To see the details, add the node to NPM for monitoring and enable CLI polling.
If you only have NCM installed and cannot see any vPCs, download the running config to get a list of vPCs configured on the device. To get more information about vPCs, install NPM.

- You have enabled CLI polling on the device.
- You are using the correct user credentials to log in to the device.
- You are using the correct password for CLI access.
- You have enabled the Nexus vPC poller:
 a. On the node details view, click List Resources in the Management resource.
 b. Ensure Nexus VPC is selected.

Cannot see peer nodes?

If you cannot see the peer node for monitored vPCs, make sure the keep-alive link is alive.

To verify the keep-alive link, run the following command on the device:

```
show vpc peer-keepalive
```

Review the command output. The vPC keep-alive status must have the following value:

- peer is alive.

If the value is different, adjust the configuration on the device.
The interface (port channel) is grey

If an interface is grey and you only see the peer vPC name, click Start monitoring unknown interfaces, and select All interfaces on the List Resources page.

💡 If you don't want to monitor all interfaces on the device, select at least the interfaces displayed for the vPC on the vPCs subview.

Unknown vPC on the peer

If the vPC on the peer is unknown, the vPC is not configured on the peer node.

Check the configuration on the device, and make sure the vPC is configured correctly.

Extend logging

If the above steps do not solve your issue, enable the CLI session trace to extend logging:

a. Click Settings > All Settings > CLI Settings in the Product Specific grouping.
b. Click Enable Session Tracing, and click Submit.

Review the session trace files located at:

%ALLUSERSPROFILE%\Application Data\SolarWinds\Logs\Orion\CLI\Session-Trace
Access Nexus-specific information

To display Nexus-specific details, the device must be monitored in NPM and CLI polling must be enabled. See Set up monitoring for Cisco Nexus devices.

1. In the Orion Web Console, navigate to the Node Details view for a monitored Nexus device.
2. For an overview about the health of interfaces on the device, review the Health Summary widget.

 ![Health Summary]

 - **INTERFACES**: 83 • 6 • 6

3. For more details about interfaces, click the Interfaces subview in the subviews menu on the left. The Interfaces subview lists monitored interfaces on the device, together with their in and out utilization, or errors in the last hour.

 ![Interfaces subview]

 To go to the Interfaces subview, you can also click a status group number on the Health Summary widget. The Interfaces subview opens, filtered by the status you clicked.

4. Use the filter and search options to quickly find more details about any interface on the Nexus node.

5. Click the vPCs subview to list virtual port channels connected to the monitored Nexus device,
together with the interface and the peer vPC details.
Monitor Cisco SwitchStack

With SolarWinds NPM, you can view the health of individual Cisco® SwitchStack® members, monitor power and data connections between the members, and quickly locate a switch with issues.

Out-of-the-box events and alerts notify you when a member, or a connection between members goes down.

Add the Cisco SwitchStack for monitoring as a node. The IP address is always assigned to the master switch (highlighted with a crown icon).

View stack members and rings

When you receive an alert about a SwitchStack problem, go to the SwitchStack node details page, and click the SwitchStack subview.

The subview provides member-specific monitoring with topology maps showing how the data ports and power ports are connected, and information to pinpoint switches with issues.

You can quickly see which switch is having issues, locate it by serial number in the stack, and replace it or resolve the issue.
View the health of stack members

When you are monitoring hardware health on a Cisco SwitchStack node, you can see the health of individual switches in the stack. The health indicators inform you when the values on a switch are near the safe limits, or when they reach the critical stage.

1. Log in to the Orion Web Console, and go to the SwitchStack node details page, and click the Network subview.
2. Consult the Current Hardware Health resource.
3. Expand a switch in the stack to display hardware health monitors.

![Current Hardware Health](image)

The item in the Status column describes the number of sensors monitored on the switch, grouped by the status of the sensor.

You can now troubleshoot the SwitchStack member that is experiencing issues.

See also Monitor hardware health.

Cisco SwitchStack events

Events for Cisco SwitchStack include messages about the following issues and changes:

- Stack ring redundancy loss
- Stack ring failure
- Members being added or removed
- Member number changes
- Master switch changes
- Power redundancy loss
- Power capacity change
Out-of-the-box alerts for SwitchStack

Out-of-the-box SwitchStack alerts inform you about the following items and more:

- SwitchStack Master Changed
- SwitchStack Data Ring Broken
- SwitchStack Member Number Changed
- SwitchStack Power Redundancy Lost

Not all out-of-the-box alerts are turned on by default.

Create alerts based on SwitchStack events

You can [configure additional notifications](#) based on SwitchStack events. For example, you can specify that when a stack ring fails, you want to receive an email with details.

Out-of-the-box alerts cover the most frequent issues. Review available alerts and [duplicate and edit the alerts](#) if you only need small adjustments.

1. Select Alerts & Activity > Alerts, and click Manage Alerts.
2. Click Add New Alert.
3. On Trigger Condition, select the SwitchStack item you want to alert on.

4. In Trigger alert when, select a condition, click the arrow in the second box next to the selected SwitchStack object, and select Browse all events.
5. Select the event you want to alert on and if necessary, complete the trigger condition.

 For example, if you want to be notified about a SwitchStack ring failure, select the Ring Failure event, select Event must match the filter, and then select New Ring Failure is equal to Yes.

 ![Event Filter Example](image)

6. **Specify the trigger action** and complete the wizard.

 After the trigger condition occurs, you will be notified about it both by the event and the trigger action you specified.
Set up and monitor Cisco Unified Computing Systems (UCS)

To gain an overview of all information provided by UCS, add the UCS master device, and the primary fiber interconnect devices into the SolarWinds Orion database for monitoring.

1. Confirm that LDAP authentication is not enabled on your UCS device. See the device documentation for details.

2. Verify in the UCS console that the fiber connects have external IP addresses.
 If the external gateway, external IP address, or external mask are set to 0.0.0.0, edit them with values valid for external devices.

3. Add the UCS Master node to the database.

 a. Click Manage Nodes in the All Nodes resource if the node is not in the list.
 b. Click Add Node. Provide the IP Address, or provide the host name and select Dynamic IP Address.
 c. Select External Node or Status Only: ICMP as the polling method.
 d. Select UCS Manager Credentials, and provide the credentials.
 - Polling Engine
 - UCS Port
 - UCS User Name
 - UCS Password
 e. Click Test under the UCS fields, and click Next.
 f. Select the resources to monitor on the node.
 g. Add relevant pollers.
 h. Review your information, and click OK, Add Node.

4. Add each UCS Fabric Interconnect switch and select SNMP as the polling method. See step 3 for details.

 For Fabric Interconnects, the polling method must be SNMP. The SNMP version is the customer's preference.

5. Add each blade, chassis, or any other device using ICMP as the polling method. Repeat step 3 for each device.

6. Double-click on the UCS Master node in All Node, and find the UCS Overview resource.

 To select the proper view we use the existing View By Device Type feature.
To ensure that Standard Poller does not overwrite MachineType and other fields, we use EntityType to identify UCS node in the Standard Poller (and so force Standard Poller not to overwrite our required fields). This same mechanism is also used for the ESX VMware API.

7. If any UCS device shown in the UCS Overview is not currently managed, double-click the device, and add the node.
Network Insight for F5 BIG-IP load balancers

Network Insight provides comprehensive monitoring for the F5® BIG-IP® family of load balancers, giving you the insight you need to keep your most important services running smoothly. Use Network Insight to:

- Monitor the health and performance of all components of application delivery including WideIPs, virtual servers, pool members, and more.
- Identify the components that are contributing to slowness, service outages, or any service that could be affected by an infrastructure problem.
- Visualize your entire application delivery environment and get an instant status of a service or device. Click on any status indicator to see additional details about that component or to show relationships.
- Graphically display relationships and component status. Easily view the relationships from the service through the traffic managers, virtual servers, pools, and pool members along with a detailed status of each component.

The performance statistics you can monitor on F5® BIG-IP® devices include device status and availability, CPU and memory performance statistics, and interface performance details.

Set up Network Insight for F5® BIG-IP® load balancers

To monitor the servers and connections in your load balancing environment, make sure your F5 devices meet the following requirements, add the F5 devices for monitoring, and enable F5 iControl.

Requirements

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>supported modules</td>
<td>F5 Local Traffic Managers (LTMs)</td>
</tr>
<tr>
<td></td>
<td>BIG-IP DNS (formerly called Global Traffic Managers or GTMs)</td>
</tr>
<tr>
<td>SNMP</td>
<td>used to poll everything except for health monitors</td>
</tr>
<tr>
<td></td>
<td>TMOS version 11.2 and later (including 12.0)</td>
</tr>
<tr>
<td>iControl by F5</td>
<td>used to poll health monitors and to enable and disable the rotation of pool members</td>
</tr>
<tr>
<td></td>
<td>TMOS version 11.6 and later</td>
</tr>
</tbody>
</table>

The iControl account used in NPM must be a local account on the F5 device. You cannot use Active Directory or TACACS accounts.
Add F5 devices and enable iControl

Add F5 devices hosting global traffic managers (GTMs) and local traffic managers (LTMs) for monitoring.

You need Node Management Rights. See Define what users can access and do.

1. Click Settings > All Settings, and click Add Node in the Getting Started grouping.
2. Enter the IP address for the device.
3. Select Most Devices: SNMP and ICMP as the polling method.
4. Enable F5 iControl:
 a. Scroll down to Additional Monitoring Options, select Poll for F5 iControl, provide the credentials for accessing the iControl API on the F5, and click Test.
 b. If iControl does not run on the default port 443, select Advanced Settings, and provide the port.

5. Complete the Add Node wizard.

Both status information and health statistics will be collected on the F5 device, and you can now monitor your load balancing environment:

- Monitor services delivered by F5® BIG-IP® load balancers
- Take an F5 pool member out of rotation

See Discover your network with the Discovery Wizard to add more F5 devices at the same time.

Enable iControl on F5 load balancers

When your F5 devices are already monitored in SolarWinds NPM, make sure iControl is enabled. F5 iControl API is used for collecting health monitor statistics from load balancers, and for enabling and disabling the rotation of pool members.

1. Click Settings > Manage Nodes.
2. Select the node, and click Edit Properties.
3. Enable F5 iControl.
4. Click Submit.

Now you can enable and disable the rotation of pool members and see the health monitors polled on the node.

Monitor services delivered by F5® BIG-IP® load balancers

A load-balanced service is comprised of many components that work together. The Balancing Environment resource allows you to browse all of these components and their relationships and status.

 The page shows an overview of your load balancing environment.

 At the top, you can see your load balanced services. Below Services, there are Global Traffic Managers (GTMs) that host the services. The GTMs send users to your Local Traffic Managers (LTM). Your LTMs present virtual servers which are made up of pools, and individual pool members hosting the content.
1. Dotted rectangles highlight high availability (H/A) clusters.

2. Point to a service to review the tooltip.
3. To see more detailed information about the component, such as the number of concurrent connections and the load balancing algorithm, click the service and select Display Details Page.

4. The relational view of the load balancing environment sticks with us on the details page so we can continue to explore around. Select a virtual server, and click Display Details Page. This shows us the number of active connections for each pool member. We can see the load balancing algorithm and how evenly it is distributing load.
5. Navigate through the load balancing environment to view the health of individual components.

6. Drill in to the components with issues, review the data provided by SolarWinds NPM, such as the status of load balancing components and the reason why they are not up. Use the data to troubleshoot the issues.

Status of F5 devices

F5 status is information polled directly on the F5 device through SNMP. SolarWinds NPM also polls the status reason from the F5 device and displays the reason in the element's tooltip and on the details pages.

The status for GTM and LTM modules is calculated. LTM status is calculated based on virtual server, GTM status is calculated on the WideIP (service).
F5 status is not the same as the node status. Both node statistics and F5 statistics are polled through SNMP, but from separate parts of the MIB tree. That's why a node can be up (Orion statistics), but the corresponding load balancing component is down (F5 statistics).

F5 device status mapping to Orion status

We mapped the status icons used for F5 devices to Orion Platform icons. For explanation of F5 statuses, see [F5 support help online](#).

<table>
<thead>
<tr>
<th>F5 STATUS</th>
<th>Orion Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>Up</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Warning</td>
</tr>
<tr>
<td>Down</td>
<td>Down</td>
</tr>
<tr>
<td>Disabled</td>
<td>Unmanaged</td>
</tr>
<tr>
<td>(error)</td>
<td>(disabled on F5)</td>
</tr>
<tr>
<td>(unlicensed)</td>
<td>(unreachable)</td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

F5 status in Orion

The table explains what the Orion statuses mean for individual components in the load balancing hierarchy. Status is usually polled on devices, but for some components, such as GTMs and LTM, it is calculated based on polled values for their child objects.
Load Balancing Component

<table>
<thead>
<tr>
<th>Status</th>
<th>Service</th>
<th>GTM</th>
<th>LTM</th>
<th>Virtual Server (VS)</th>
<th>Pool</th>
<th>Member</th>
<th>F5 Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Reported on the device</td>
<td>At least one service is not up</td>
<td>All least one virtual server is not up</td>
<td>Unavailable based on connection limit</td>
<td>No members are currently available</td>
<td>Unavailable based on the connection limit</td>
<td>Unavailable based on the connection limit</td>
</tr>
<tr>
<td>⬤</td>
<td>Reported on the device</td>
<td>All services are not up</td>
<td>All virtual servers are not up</td>
<td>Associated objects marked the VS as unavailable. User action necessary</td>
<td>All members are unavailable</td>
<td>The parent F5 server is down or the monitor on the member marked it as down</td>
<td>Down based on monitor</td>
</tr>
<tr>
<td>⬤</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unmanaged: Disabled on the F5</td>
<td>-</td>
<td>Unmanaged: Disabled on the F5</td>
<td>Unmanaged: Disabled on the F5</td>
</tr>
<tr>
<td>⬤</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unreachable: Parent LTM is down</td>
<td>Unreachable: Parent LTM is down</td>
<td>Unreachable: Parent LTM is down</td>
<td>-</td>
</tr>
<tr>
<td>⬤</td>
<td>Reported on the device</td>
<td>GTM is added but not polled yet</td>
<td>LTM is recognized by GTM, but not managed in Orion</td>
<td>Unknown</td>
<td>Unknown</td>
<td>No monitors assigned</td>
<td>No monitors assigned</td>
</tr>
</tbody>
</table>

F5 high availability

High availability (H/A) is configured on the device level. It does not matter whether you have a GTM or LTM installed on the device, the module is covered by H/A. Devices are connected in traffic groups. If one device fails, another device in the group handles its requests. Devices in a traffic group synchronize the configuration. The configuration is reflected by the synchronization status.

In SolarWinds NPM, we poll the failover and synchronization status.
Devices in one traffic group are connected by dotted rectangles on the Balancing Environment resources. Display the tooltip to see details about the H/A failover and synchronization status.
You can see the H/A statuses in tooltips, and on the LTM or GTM detail views. The GTM or LTM details resource shows the H/A status and synchronization status. In the High Availability resource, you can check the details about other members of the traffic group.

Global Traffic Manager Details

<table>
<thead>
<tr>
<th>STATUS</th>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATUS REASON</td>
<td>One or more Services are not Up.</td>
</tr>
<tr>
<td>Polling IP Address</td>
<td></td>
</tr>
<tr>
<td>Hosting Orion Node</td>
<td></td>
</tr>
</tbody>
</table>

High Availability

<table>
<thead>
<tr>
<th>NAME</th>
<th>Polling IP</th>
<th>H/A Status</th>
<th>Sync Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Active</td>
<td>In Sync</td>
</tr>
</tbody>
</table>

F5 health monitors

To monitor the health of your load balancing environment, SolarWinds NPM polls health monitors on your F5 servers (nodes), and on F5 pool members. Health monitors run periodic tests for network service availability, such as ICMP, HTTP, IMAP, or MSSQL.

To get the health statistics, **F5 iControl API must be enabled**.

* F5 health monitors are not related to hardware health. The status of an element is based on health monitors polled by F5 iControl API.
Go to a pool member or an F5 server details page to review the health monitors resource.

Health monitors require at least one pool member to be up. If no pool members are up, the LTM, the virtual server, and the pool will all be marked as down. Drill down into the pool member to see why it is down.

Events, alerts, and reports for Network Insight for F5® BIG-IP® load balancers

Each F5 details page includes the F5 Events resource that displays events relevant for the object. Click an event to go to the details page for the object with issues and review the situation.

Load balancing events include:

- A component status changes to down
 The components include virtual IP, Pool, Server, Wide IP, GTM, or servers.
- Health probe status changes up and down
- H/A peer status or synchronization change
- Server is taken out and placed in rotation
- Concurrent connections per pool member exceed a threshold
Out-of-the-box alerts for F5 load balancers

Out-of-the-box alerts cover the most critical issues in your F5 load balancing environment. For example, alerts warn you if the status of your F5 service changes or if a server goes down.

Out-of-the-box reports

SolarWinds NPM includes several out-of-the-box reports for F5 that you can use to view trends, establish baselines, or identify potential issues, such as:

- Average LTM Connections over the last 30 days
- Average service availability over the last 30 days
- Average service resolutions per second over the last 30 days

Take an F5 pool member out of rotation

When you need to perform maintenance on one of the pool members providing a service, take the server out of rotation so that you can perform maintenance without impacting end users.

Taking server out of rotation means you put the pool member in maintenance mode.

F5 devices support Disabled and Forced Offline modes. SolarWinds NPM uses the Disabled maintenance mode.

Tip Taking a pool member out of rotation requires that you have enabled F5 iControl on the device.

Why shouldn't I start maintenance immediately after I take a pool member out of rotation?

When you put a pool in maintenance mode, there are still users connected to the server. Disabling the server only disables brand new connections.

The maintenance mode only changes how the LTM handles incoming requests.

- New users are not sent to the server while the servers is in maintenance mode.
- In the Disabled mode, new connections with existing sessions are not affected. Users who open a new TCP session but were previously using the server, will continue to be sent to this server.
- Existing connections are not affected. Users with an open TCP session with the server will continue to use it.

Tip SolarWinds recommends that you wait until the existing connections end or time out not to impact the connected users.
Take a pool member out of rotation

1. Click My Dashboards > Network > Load Balancing, and locate the parent pool of the pool member.
2. Click the parent pool, and click Display Details Page.
3. On the Pool Details view, find the Pool Members resource, and click Change Rotation Presence.
4. Click the green check mark icon next to the pool member to remove it from rotation, and click Submit.

Add a reason for taking the pool member out of rotation in the Note field. An info icon will appear next to the pool member, and your note will be displayed as a tooltip when you hover over the info icon.

The pool is removed from rotation now. To prevent user impact, watch the connection count for the pool member. It should decline over time as existing users finish their sessions and no new users are added. After the connection count has become low, you can begin maintenance.
Monitor wireless networks

SolarWinds Network Performance Monitor can monitor any 802.11 IEEE-compliant autonomous access point (AP) or wireless controller, and provide details about access points (AP), wireless clients, wireless controllers, thin APs, and rogue APs.

SolarWinds NPM automatically recognizes your wireless APs and controllers as wireless devices when they are added to the SolarWinds Orion database. See Discover and add network devices.

The wireless interfaces are not found during discovery process. When a wireless device is added and an inventory search is performed, each wireless interface found is added to the database and polling begins.

Migrate data from the Wireless Networks Module

If you have already used an earlier version of the Wireless Network module to poll your wireless devices, historical data will automatically be migrated to the new format.

- The wireless migration is performed in batches during scheduled database maintenance.
- The migration will notify users when a node is migrated and when all nodes have been migrated in the event log.
- You will not see historical data immediately because this process is throttled.

View wireless data in the Orion Web Console

The Wireless Summary view displays a list of all wireless access points (APs) and clients connected to each AP.

You can display the coverage of your wireless access points or the location of connected clients in a map. See Create wireless heat maps and Viewing the location of clients in wireless heat maps.

Access point details include the AP name, IP address, device type, SSID, channels used, and the number of clients currently connected.

Client details include client name, SSID, IP Address, MAC Address, Received Signal Strength Indication (RSSI), time connected, data rate, bytes received and bytes transmitted.

The following IPv6 statistics are currently not monitored:

- Connections between wireless users and access points
- Connections between thin access points and controllers
To view wireless access points and clients:

1. Log into the Orion Web Console.
3. In the Show list, select what you want to see (Access Points or Clients).
4. To find an access point or client, type a search string into the Search field, and click Search. If there are too many items, select a Group By method to filter the result.
5. To see clients currently connected to an access point, locate the access point, and expand the access point name.
6. To display the details view for an access point, click the access point. The node details view is specific for the selected device. See Specify views for device types.

Monitor Meraki infrastructure

Add Meraki organizations to NPM as external nodes, poll information from the cloud and display polled data in the Orion Web Console.

What does NPM monitor for Meraki infrastructure?

Meraki infrastructure provides centralized management of end devices, such as wireless devices, switches, or security appliances, as a cloud service. Physical devices act as thin Access Points (APs), managed by the cloud system. Physical devices are installed at physical locations and assigned to customers.

In NPM, Meraki objects are mapped to wireless entities.

<table>
<thead>
<tr>
<th>Meraki Model</th>
<th>How do you see Meraki objects in Orion?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization</td>
<td>Controller</td>
</tr>
<tr>
<td>Access Point</td>
<td>Thin Access Point</td>
</tr>
<tr>
<td>Client</td>
<td>Client</td>
</tr>
</tbody>
</table>

Unsupported metrics

- **SSID information:** Meraki does not provide any SSID information, this field is empty in resources and reports.
- **Response time and packet loss:** SolarWinds NPM does not poll response time and packet loss for Meraki infrastructure. Any metrics shown for response time and packet loss are polled from the cloud and not from the node. In the cloud, a load balancer selects the node used for the traffic, so the values might be polled on different nodes for each poll.
- **Status of access points:** Meraki access points are always displayed as Up because the REST API used to poll access points does not support polling the status.
Requirements

- NPM 12.1
- Meraki account with administrative privileges

Add Meraki organization to NPM

To monitor Meraki infrastructure with NPM, add the Meraki organization to the SolarWinds Orion database as an external node.

Each Meraki organization monitored with NPM uses a node license.

1. Log in to the Orion Web Console as an administrator.
2. Click Settings > Manage Nodes, and click Add a Node.

 The Polling Hostname or IP Address is disabled and dashboard.meraki.com is used as the default host name for Meraki networks.

4. Provide the API Key you generated in the Cisco Meraki Dashboard.
5. If you have multiple organizations registered, click Get Organization List, and select the organization. If you have one registered organization, it is selected by default.

 Polling uses the global HTTP proxy settings. Configure your HTTP proxy settings.

 Polling Meraki organizations uses the global HTTP proxy settings. To change the defaults, click the Configure proxy link.
6. Review and adjust the device properties.
 a. Review your API key, organization, and proxy settings.
 b. To edit how often the node status, or monitored statistics are updated, change the values in the Polling area.

 ![Node Status Polling: 120 seconds](image)

 ![Collect Statistics Every: 10 minutes](image)

 ![Polling Engine: NPM-01 (Primary)](image)

 For critical nodes, you may need to poll status information or collect statistics more frequently than the default polling intervals.

 c. Enter values for custom properties for the node.

 The Custom Properties area is empty if you have not defined any custom properties for the monitored nodes. See "Add custom properties to nodes" in the SolarWinds Getting Started Guide.

 d. To adjust when the status of the node changes to Warning or Critical, edit alerting thresholds for the metric. Select the Override box and set thresholds for the node.

 ![Alerting Thresholds](image)

7. Click OK, Add Node.

The Meraki organization is now monitored as a wireless controller node. After the first poll, you can see the data from the device in the Orion Web Console.

On the Manage Nodes view, click the added node to see the node details in the Wireless Controller view, or drill down into thin access points listed on the view.
Monitor Meraki organizations

Click My Dashboards > Network > Wireless to see monitored Meraki organizations in the Wireless Overview and to view monitored controllers, access points, and clients.

![Wireless Summary View](image)

To find out access points on a controller, select Controllers in the Group by list.

Click a wireless access point to see details of the access point, such as the controller details, thin access point details, active wireless clients and wireless clients connected in the past.

![Wireless Thin AP](image)
Click the controller name to see the wireless controller details, such as node details or list of thin access points.

Edit Meraki organizations

Edit Meraki polling details, custom properties or alerting thresholds in the same way as other nodes in NPM.

When you add a Meraki organization to NPM, you can no longer change the polling method from the UI.
Create wireless heat maps

Wireless heat maps help you visualize wireless signal coverage on a building floor plan.

Wireless heat maps are only supported for Cisco wireless controllers. The wireless controllers you want to see on wireless heat maps must be managed in SolarWinds NPM.

Before you begin

- Obtain an image of the wireless coverage area, such as a floor plan.
- Find at least one measurement of the distance between two points on the image, such as the length of a conference room.
- Choose the physical location of access points to accurately place them on the map.

To create wireless heat maps:

2. On the Welcome to Orion Network Atlas page, click Wireless Heat Map in the Create New section.
3. Enter a name for the new map.
4. Set a floor plan as the background.
5. Set the wireless heat map scale.
6. Add wireless access points.
7. Optional: Improve the accuracy of wireless heat maps by taking samples of the signal strength on real devices.
8. Click Generate to display wireless signal coverage.

See also Display wireless heat maps in the Orion Web Console.

Disable the wireless heat map poller

The wireless heat map poller collects information about the signal strength on monitored access points. By default, this poller is disabled on your devices because of performance issues.

Network Atlas enables the wireless heat map poller on wireless controllers used in wireless maps because the information collected by the poller is required for including access points into wireless heat maps.

When do I need to disable the wireless heat map poller?

If you experience performance issues when working with wireless heat maps, disable the wireless heat map poller on the devices.

Disabling the poller resolves performance issues, but your wireless heat maps will no longer be updated. The Orion Web Console resources and the Network Atlas will both display the last status generated before you disabled the wireless heat map poller.

1. Log in to the Orion Web Console as an administrator.
2. Click Settings > All Settings in the menu bar.
3. In the Node & Group Management grouping, click Manage Pollers.

4. Locate the wireless heat map poller in the pollers table, and click the item in the Assignments column, such as 1 Node. Clicking the assignments link opens the Assign Wireless Heat Map to Nodes view.

5. Select all nodes for which you want to disable the poller, and then click Off: Disable Poller in the table title.

 ![Clicking the grey Off icon for the nodes in the Poller Status column disables the poller for the nodes. The icon will turn to green On, and the poller will be disabled.]

Set a floor plan as the background

The floor plan should reflect the real dispositions of the office or buildings on the map, so that you can correctly position the wireless access points and reflect the wireless signal coverage on your map.

Requirements:

The floor plan must be a graphic file in one of the following graphics formats:

- Graphics Interchange Format (.gif, non-animated)
- Tagged Image File Format (.tiff)
- Joint Photographic Experts Group (.jpg)
- Microsoft Windows Bitmap (.bmp)
- Portable Network Graphics (.png)

 ![To ensure the readability of wireless heat maps, use black and white images.]

To set a background for wireless heat maps:

1. Create the wireless heat map in the Network Atlas.
2. Click Background Image on the Home ribbon.
3. Navigate to the floor plan image, select the image, and click Open.

 The floor plan will appear as the background for your heat map.

Set the wireless heat map scale

The correct scale is necessary for an accurate display of the wireless coverage provided by your wireless access point.

 ![You can use online maps, such as the full version of Google Maps, to measure your office building. Locate the building on Google Maps, right-click one wall, and measure the distance to the other wall of the building.]

Requirements

- You have already inserted a background image for your wireless heat map (a floor plan).
- You know the distance of two objects displayed on the background image.

To minimize error, set the scale for the longest distance possible, such as the building or floor length.

To set the map scale:

1. Create the wireless heat map in the Network Atlas.
2. Click Set Scale in the Home ribbon. A blue line segment with squares as end points will appear in the plan.
3. Drag endpoints of the segment to the objects on the map whose distance you know.
4. Fill in the distance between the endpoints into the appropriate field, and select the units (feet or meters).

 Example: In floor plans, you usually know the dimensions of individual rooms. Drag and drop the line segment endpoints so that the endpoints are located on the opposite walls, and fill in the width of the room.
5. Click Set Scale to apply the scale to the wireless heat map.

Add wireless access points

To generate a wireless heat map, add wireless access points used by client devices into the map.

Requirements

- The wireless LAN controllers must already be managed in your Orion Platform product.
- Only Cisco controllers are supported.
- The wireless heat map poller must be enabled on the wireless LAN controllers that you use in the map.

To add wireless access points:

1. Create a wireless heat map in the Network Atlas.
2. Go to the navigation tree on the left of the Network Atlas main screen.
3. Locate the wireless access points that you want to add to the map.

To find access points on a node, navigate to Orion Objects > vendor name, such as Cisco > appropriate node > Wireless Access Points.

4. Drag the access points to their location on the map.

 The selected access points will appear on the map. You can now generate the map.

 To make the map more accurate, take signal samples.
Improve the accuracy of wireless heat maps by taking samples of the signal strength on real devices

Wireless heat maps display the ideal wireless signal coverage, they do not count with physical obstacles, such as office walls. To make wireless heat maps more real, measure the signal strength on real devices, such as cell phones, laptops, or tablets connected to your wireless network. The measured values are stored as signal samples and used for calculating the signal coverage on wireless heat maps.

Signal samples represent the signal strength measured in a specified location.

Take signal samples in places where you expect the signal to be blocked by walls or other obstacles, or in places where the signal strength does not correspond with your heat map.

Take signal samples with cell phones, because polling the signal is usually faster for them.

Simple signal samples

Take a wireless device, walk it to a certain location, and take a signal sample there. Then, walk the device to another location, and take another signal sample. This procedure is called "walking edition" because it requires you to walk through the office.

Multiple signal samples

If you have multiple devices connected to your wireless access points, take multiple signal samples at once (called "sitting edition" because you can do it sitting at your desk).

Signal samples stay in the map and influence the calculation of wireless heat maps even after the client moves from its position. When you move access points in a map, the signal samples might not be accurate any more. Delete obsolete signal samples, and add new ones.

Requirements

- You need to have a [wireless heat map created](#) and open in the Network Atlas.
- You need to have [wireless access points added](#) into the map.
- You need to have clients, such as cellular phones, tablets, laptops, connected to the access points positioned in your wireless heat maps.

Take simple signal samples

1. Click Take Signal Sample in the Home ribbon. The Signal Sample wizard will display on the right side of the Network Atlas screen as a tab.
2. Walk your device to the location where you want to measure the wireless signal strength and click Next.
3. Select the wireless client (cellular phone, laptop, or tablet) in the drop-down list, and click Next.
4. Drag the client into its current location on the map, and click Next. Network Atlas will start measuring the wireless signal strength in the spot. It can take a few minutes, depending on the device.
5. To add another signal sample, click Repeat, walk the device to a new location, and repeat steps 3 - 4.
6. To apply the measured signal strength to the heat map, click Generate Map.
7. Network Atlas will regenerate the map. Click Close to hide the Signal Sample wizard tab.

Take multiple signal samples at the same time
1. Click Take Signal Sample in the Home ribbon. The Signal Sample wizard will display on the right side of the Network Atlas screen as a tab.
2. Click Use Multiple Devices to Take Signal Samples.
3. Drag the clients to their positions on the wireless heat map, and click Next.

 - If there are too many devices, use the search box to find the devices you want to use for creating signal samples.
 - Measuring the wireless signal strength can take a few minutes.
 - If the signal measuring fails, you can either repeat the measurement for the device, or restart the wizard.

4. Network Atlas will automatically regenerate the map according to the defined signal samples. Click Close to hide the Signal Sample wizard tab.

Troubleshoot wireless heat maps
If your wireless signal coverage on your wireless heat maps is not as expected, you can take the following troubleshooting measures.

- Make sure that the map scale you have entered is precise.
- Make sure that your access points are located correctly.
- Verify that signal samples are up-to-date.
- The signal samples stay in the map even after the device you measured the signal strength on moves away. If you change the position of your access points, or the dispositions of your office, the signal samples might not be accurate and could affect the calculated wireless heat map.
- Delete obsolete signal samples.
 To delete a signal sample, open the wireless heat map in the Network Atlas, select the signal sample, and press the Delete key.
- Add new signal samples. See [Improve the accuracy of wireless heat maps by taking samples of the signal strength on real devices](#).

Display wireless heat maps in the Orion Web Console
1. Create the wireless heat map in the Network Atlas.
2. Log in to the Orion Web Console.
3. To open a wireless heat map, use one of the following options:
 - Go to the All Wireless Heat Maps resource, and click the thumbnail for the map. The map will open in the Wireless Heat Map view that includes all resources specific for wireless heat maps.
 - By default, the All Wireless Heat Maps resource is available on the NPM Summary view.
 - Add the Map resource on the view, click Edit, select the map in the list, and click Submit.

Change the time and frequency for regenerating the map

By default, the wireless heat map is regenerated once a day, and the information about clients connected to wireless access points is collected every 5 minutes.

1. Click Settings > All Settings.
2. In the Thresholds & Polling grouping, click Polling Settings.
4. Adjust the time when wireless heat maps should be regenerated in Map Generation Start Time.
5. Specify how often the information about clients connected to wireless access points should be collected in Default Client Signal Strength Poll Interval.
6. Click Submit.
Monitor EnergyWise devices

EnergyWise is a Cisco technology developed to help you cut enterprise energy costs, address environmental concerns, and adhere to government directives around green technologies. By enabling the energy-saving features of EnergyWise-capable devices, you can run business-critical systems in a fully powered state while allowing less critical devices on Power over Ethernet (PoE) ports to power down or drop into standby during off-peak hours.

In the Orion Web Console, you can consult the EnergyWise Summary view and related resources to help you monitor the energy expended on your network and the energy savings provided by EnergyWise-enabled devices.

- Fully upgrade the IOS of all EnergyWise-enabled devices on your network. For more information, consult your device documentation or www.cisco.com.
- If the EnergyWise Summary view does not display in the Orion Web Console menu bar, see Add the EnergyWise Summary View to the Orion Web Console menu bar.

Add the EnergyWise Summary View to the Orion Web Console menu bar

1. Log in to the Orion Web Console as an administrator.
2. Click My Dashboards > Configure.
3. Click Edit beneath the menu bar to which you want to add the EnergyWise Summary view.
4. Drag the EnergyWise button from the Available items list on the left to the correct location in the Selected items list on the right.
 - Selected items display from left to right in the selected menu bar as they are listed from top to bottom.
5. Click Submit.

Temporarily reset the current power level of a monitored EnergyWise interface

Any change made to the power level of a monitored EnergyWise entity is only effective until the next scheduled application of a defined recurrence policy.

To remotely reset the current power level of an interface, the parent node must have not only Community String, but also Read/Write Community String set correctly. See Edit polling settings.

Policies are configured either manually on the monitored device itself or with a configuration management utility, such as SolarWinds NCM. See www.solarwinds.com.
Some Cisco IOS versions report EnergyWise levels as values 1–11 instead of 0–10. In SolarWinds NPM 10.1.2 and later versions, the levels are automatically corrected. IOS's on some devices are not affected by this issue.

1. Log in to the Orion Web Console as an administrator.
2. Click Settings > Manage Nodes.
3. Locate the device to edit:
 - Use the search tool above the node list to search your database for the parent node of the EnergyWise interface entity you want to reset.
 - Select a Group By option, and click the group including the parent node of the EnergyWise interface entity you want to reset.
4. Expand the parent node, and select the interface entity.
5. Click More Actions > Override Power Level.
6. Select a power level, and click OK.

To reset the current power level, you can also go to the Interface Details view, and click Set Power Level in the EnergyWise Interface Details resource.
Set SolarWinds NPM thresholds

SolarWinds NPM thresholds are relevant for nodes and interfaces. They include Cisco Buffer Misses, Interface Errors and Discards, Interface Percent Utilization, and Flapping Routes.

- When a metric reaches the specified Critical Level threshold on a node or interface, the node or interface will be displayed as bold red in resources and reports.
- When a metric reaches the specified Warning Level thresholds on a node, the node or interface will be highlighted in red in appropriate resources and reports.
- Flapping Routes use different colors when the thresholds are exceeded: red for the error threshold and yellow for the warning threshold.

1. Log in to the Orion Web Console using an account with Administrator Rights.
2. Click Settings > All Settings in the menu bar.
3. In the Thresholds & Polling grouping, click NPM Thresholds.
4. Provide the values for Critical Level and Warning Level for the selected metrics.
5. For the Interface Percent Utilization metric, specify if you want to use average or peak daily values in calculations for capacity forecasting.
6. Click Submit.

Monitored thresholds are changed on a global level for NPM

See also Define UnDP Warning and Critical thresholds.
Create custom monitors

With SolarWinds NPM, you can extend monitoring to non-standard devices, using object identifiers (OIDs) organized in management information bases (MIBs).

SolarWinds NPM provides the following advanced monitoring options:

- **Device Studio pollers**: Create pollers for certain technologies directly in the Orion Web Console.

 What is a poller?
 Statistics monitored on your devices are specified by pollers. Pollers hold information about a monitored property, how to get the current value for the property, and where and how to display the retrieved data.
 What do you need custom pollers for?
 - To monitor a specific metric which is not monitored out-of-the box.
 - To monitor special equipment.
 - To monitor objects although the number of monitored objects exceeds a poller's capacity limitation.

- **Universal Device Pollers**: If there is a specific metric that is not monitored out-of-the box, or if you have special equipment you need to monitor, create a custom poller based on a specific object identifier (OID) and transform polled results into a resource in the Orion Web Console.

 Review the comparison of UnDP and Device Studio pollers to determine which poller to use.

<table>
<thead>
<tr>
<th>UNDP</th>
<th>DEVICE STUDIO POLLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can poll only one OID.</td>
<td>Can poll multiple OIDs for a given technology.</td>
</tr>
<tr>
<td>Cannot perform logical operations or transformations on the polled data.</td>
<td>Can perform logical operations or transformations on the polled data.</td>
</tr>
<tr>
<td>Polled values are displayed in dedicated resources.</td>
<td>Polled values are displayed in existing resources.</td>
</tr>
</tbody>
</table>
Management Information Base (MIB)

Management Information Base (MIB) is a structure that describes all objects a device can report on, such as CPU, fan, or temperature. MIB contains the name, datatype, and the object identifier (OID). MIB is a hierarchical structure, displayed as a navigation tree. Every entry in the MIB tree is a value for a specific component on a specific device.

![MIB Diagram]

Each entry in the tree is followed by a number in parenthesis. Each entry in the tree can be specified using the sequence of numbers, such as `1.3.6.1(iso.org.dod.internet)`. The unique numerical value is the OID.

Monitor custom statistics based on OIDs with Universal Device Pollers

SolarWinds Universal Device Poller (UnDP) is a customization feature of SolarWinds NPM. With UnDP, you can create custom monitors for almost any statistic provided by SNMP based on its Management Information Base (MIB) and object identifier (OID).

With Universal Device Poller, you can monitor:

- Interface traffic
- CPU temperature
- Addressing errors
- UPS battery status
- Current connections to a website

Before you start configuring UnDPs

- Consult your vendor documentation, and find out which OID you want to monitor.
- Create a list of nodes that you want to poll the custom statistic on.
UnDPs do not collect data from Orion Failover Engine or Hot Standby Engines. If a SolarWinds NPM server fails, data collection for any Universal Device Pollers stops on the server.

UnDPs are tied to the polling engine on which they are hosted. If you move a monitored node from one polling engine to another, you must also move the UnDP poller.

Define a custom statistic to monitor

Statistics monitored on your devices are specified by pollers. Pollers hold information about a monitored property, how to get the current value for the property, and where and how to display the retrieved data.

Defining a custom statistic for monitoring means creating a UnDP poller.

Before you begin, consult your vendor documentation, and find out which OID you want to monitor.

1. Click SolarWinds Orion > Network Performance Monitor and start the Universal Device Poller.
2. If prompted, download and install the MIB database.
3. Click New Universal Device Poller.
4. Specify the OID:
 a. Click Browse MIB Tree, and click Search MIBs in the upper-right corner.
 b. Select a Search By option, enter a string, and click Search.
 c. Select the OID, and click Select.

- If you know the OID, fill it in.
- If you know approximately where in the MIB tree you can find the OID, click Browse MIB Tree, navigate in the MIB tree to the OID, and click Select.
5. Test the selected OID against a device. Select a node, and click Test. See Troubleshooting failed tests if the test fails.

![Test the selected OID against a device.](image)

6. On the Define Your UnDP screen, edit the suggested Name and Description. The poller name is populated automatically. The name is required and cannot contain spaces.

![Define Your UnDP screen](image)

7. To customize the value type, SNMP Get type, polling type or interval, click Advanced Options, and change the defaults:
 a. Select the expected format of values in MIB Value Type.
 - For Rate or Counter, provide a Unit and Time Frame.
 - For Raw Value, select a display Format for the polled raw values .
 - For Raw Value > Enumerated, click Map Values to provide strings corresponding to the values returned by the poller.
 b. Select SNMP Get Type, and decide whether the poller should poll nodes or interfaces.
 c. Specify the Polling Interval in minutes. Use values between 1 and 600.

 ![If you want to use the poller in a transformation, make sure that all pollers in the transformation have the same Polling Interval.](image)

8. Keep default settings for Status (Enabled) and Keep Historical Data (Yes). With these options enabled, you can see the trend of polled values in Orion Web Console views.
9. Specify the Group to which you want to add the poller, and click Next.

 To create a new group, type a name for the group into the Group box.

10. Select devices to poll the statistic, click Test, and then click Next.

 Custom OIDs often work only for identical nodes.

11. If the selected OID is a table, specify labels for the rows in the table.

12. Select the Orion Web Console views that can display the poller as a chart, gauge, or table, and click Finish.

The new poller is added to All Defined Pollers and will be polled on the selected nodes or interfaces. You can now add Universal Device Poller resources showing the polled values to Orion Web Console views.

- To view the poller status on maps, create a network map, add the poller into the map, and add the map on a view. See View UnDP status on maps.
- To check that your UnDP pollers are properly configured, start Orion Diagnostics in your SolarWinds Orion > Documentation and Support program folder, right-click a UnDP, and select Run Tests.

Troubleshooting failed tests

If the test fails on a node or interface, make sure that the following settings are correct:

- Verify that the test node is being polled using the correct community string. See Edit node properties.
- Does the device support the polled MIB or OID? See the vendor documentation to confirm the MIBs supported by your device.
- Can your SolarWinds NPM server access the device? Make sure that the device is responding to both ICMP and SNMP requests.
Select nodes or interfaces to poll a custom statistic

When you have created a UnDP poller, specify the devices (nodes or interfaces) to monitor the statistic. Before you begin, make sure the UnDP poller is created and enabled. See Define a custom statistic to monitor.

1. Click SolarWinds Orion > Network Performance Monitor and start the Universal Device Poller.
2. Click Assign Pollers.
3. Navigate the poller tree, select the pollers you want to assign, and click Next.
 By default, there are two poller groups:
 - Example - all predefined out-of-the box UnDP pollers.
 - Default Group - all user-defined UnDPs if they are not assigned to any other group.
 Selecting a poller group selects all pollers in the group. If you do not want to assign all pollers, clear the pollers that you do not want to assign.
4. Expand the node tree down to the interface level, and select the elements to apply the pollers.
 - Interfaces are not displayed unless you are assigning an interface poller.
 - Selecting a node automatically assigns a selected interface poller to all interfaces on the node. Clear boxes for interfaces that should not be assigned to the poller.
5. Click Test to see current results of the selected pollers on the selected nodes or interfaces. If the test fails, see Troubleshooting failed tests.
6. After you have completed your poller assignments, click Finish.

Transform poller results

Values polled by a custom poller are often better understood after a calculation transforms the value to a different format.

For example, if a poller returns temperature values in Celsius, you might want to see the values in Fahrenheit.

Pollers that you use in a transformation must be assigned to the nodes to poll for values that will be transformed.

1. Click SolarWinds Orion > Network Performance Monitor and start the Universal Device Poller.
2. Click Transform Results, and click Next to acknowledge examples of transformations.
3. Type the name and description for the transformation, and click Next. Names must be unique.
 Names are required. Any spaces in the name are removed.
 Descriptions are optional but might be helpful in identifying the type of information generated by the transformation.
 You can also change other default settings:
a. Select Yes in the Keep Historical Data section. You will be able to view the transformed poller data in charts and gauges in the Orion Web Console.

b. Select Enabled as the Status if you want your transformation to begin calculating results immediately.

 i. If you select Disabled, the transformation will not transform polled data.

 c. In the Group field, select a group where you want to add the transformation. To add a group, provide the new group name.

d. Optional: provide a polling interval.

 ! Make sure all pollers in the transformation use the same polling interval.

4. Provide the formula for calculating the transformation.

 a. Click Add Function, and select a function.

 b. Click within the bracket, click Add Poller, and select the poller you want to transform.

 Formula: \(\text{CtoF}(\text{in Operating Temp}) \)

 - Separate pollers with commas. The following example averages the results of three pollers:
 \(\text{avg}(\{\text{poller1}\},\{\text{poller2}\},\{\text{poller3}\}) \)

 - Use standard mathematical operations:
 \(\{\text{poller1}\}+\{\text{poller2}\} \)
Use the mathematical constants e and π, as \(e\) and \(\pi\), respectively.

Nest formulas. The following example returns the average of two poller comparisons:

\[
\text{avg}(\min(\text{poller1}, \text{poller2}), \max(\text{poller3}, \text{poller4}))
\]

5. Test the transformation on a device, and click Next.

Troubleshooting failed transformation tests

If the test fails, verify the following items:

- Is your formula correct? Ensure that all braces are balanced, that there are no unnecessary spaces, and that all pollers return the same type of values.
- Are you using the correct community string for the node that is being polled for the test? For more information about providing community strings, see [Edit node properties](#).
- Does the device support the polled MIB or OID? See the documentation supplied by the device vendor to confirm supported MIBs for your device.
- Can you access the device from the SolarWinds Network Performance Monitor server? Confirm that the device is responding to both ICMP and SNMP requests.

6. Select nodes for the transformation, and click Test.

- Interfaces are not displayed unless your poller transformation operates on an interface poller.

7. If the transformation output is a table, select labels for the rows in the table, and click Next.

8. Select Orion Web Console views where you want to include the transformed values as a chart or table, and click Finish.

- Click Preview to see how your poller resource will display in the selected Orion Web Console view.

The new transformation is added to All Defined Pollers and applied on the selected nodes or interfaces. You can add a Universal Device Poller resource to display transformed values in the Orion Web Console views.

- If the transformation combines data from other pollers, make sure that it is assigned to the same node or interface as the pollers used for the transformation and that it has the same polling interval.

Create pollers by duplicating and adjusting pollers

When creating similar pollers, consider copying a poller and modifying it.

1. Click SolarWinds Orion > Network Performance Monitor and start the Universal Device Poller.
2. In the All Defined Pollers pane, locate the poller that you want to duplicate.

- To confirm that you have selected the appropriate poller, view the poller properties in the main Universal Device Poller window.

3. Right-click the poller, and select Duplicate Poller.
4. Change the Name of the poller.
5. Adjust the poller settings. See Define a custom statistic to monitor.

Import UnDP pollers

You can import custom UnDP pollers exported from UnDPs installed with earlier SolarWinds NPM versions.

You cannot import device-specific MIBs into the SolarWinds MIB Database, but you can import UnDP pollers based on OIDs from device-specific MIBs. Import a poller and assign it to nodes or interfaces in your environment.

1. Click SolarWinds Orion > Network Performance Monitor and start the Universal Device Poller.
2. Click File > Import Universal Device Pollers.
3. For each poller you want to import, complete the following steps:
 a. Click Open, and locate the poller.
 b. Select the poller, and click Open.
4. Select the pollers to import from the list on the left, and click Import. Selected pollers will move to the pane on the right.
 - To select multiple pollers, hold down SHIFT or CTRL, and click the pollers you want.
 - To remove a poller from the Selected Pollers list, select the poller and click Remove.
 - To collapse all folders and see just the group names, hold down SHIFT, and then click – next to any of the group names.
5. Click OK.
6. To begin polling, enable the poller.
 a. Select the imported poller in the All Defined Pollers pane of the Universal Device Poller window.
 b. Click Edit Properties.
 c. Confirm that the poller Status is Enabled, and click Finish.
 Tip: If Disabled, the poller will not collect data until you enable it.
7. Specify nodes or interfaces to be polled by the imported poller. See Select nodes or interfaces to poll a custom statistic.

When the imported poller is enabled and assigned to the devices, the poller begins collecting statistics. To view the statistics, log in to the Orion Web Console, go to a view for the node or interface to which the poller is assigned, and consult the poller resource. See View Universal Device Poller statistics in the Orion Web Console.
Export UnDP pollers

If you want to use your custom UnDPs in later SolarWinds NPM versions or on different polling engines, you need to export them first.

1. Click SolarWinds Orion > Network Performance Monitor and start the Universal Device Poller.
2. Click File > Export Universal Device Pollers.
3. In the Pollers pane on the left, navigate to the pollers that you want to export.
 - To select all pollers in a group, select the group.
 - To select multiple pollers, hold down SHIFT or CTRL and click the pollers to export.
4. Select the pollers, and click Export. Pollers will move to the Selected Pollers pane.
5. Click Save.
6. Navigate to the location where you want to export the selected pollers, provide a File name, and click Save.

Selected pollers will now be stored as a .UnDP file in the specified location. You can use the .UnDP file to import the pollers on another polling engine.

Temporarily suspend collecting statistics for pollers

When you assign a poller to nodes or interfaces, it starts collecting statistics on the selected elements. If you want to suspend data collection for a poller without deleting it, disable the poller.

1. Click SolarWinds Orion > Network Performance Monitor and start the Universal Device Poller.
2. In the All Defined Pollers pane, navigate to the poller you want to disable.

 To confirm that you have selected the appropriate poller, view the poller properties in the main Orion Universal Device Poller window.
3. Select the poller, and click Edit Properties.
4. Set Status to Disabled, and click Finish.

The poller will now still be available in the Universal Device Poller application, but will not collect any statistics.
Define UnDP Warning and Critical thresholds

If values polled by UnDPs on a device reach a certain level (critical or warning threshold), the UnDP on the device is highlighted in the Orion Web Console.

💡 To get notified about exceeding a threshold in an email, configure an alert.

💡 To see pollers with exceeded thresholds in a map, see View UnDP status on maps.

1. Log in to the Orion Web Console as an administrator.
2. Click Settings > All Settings in the menu bar.
3. In the Thresholds & Polling grouping, click Custom Poller Thresholds.
4. Select a poller.
5. Select whether the expected polled value is a Text or a Number.

The Poller Value Type determines how the polled value will be interpreted. It also influences the set of possible comparison functions.

- For the Number type, available values include is greater than or less than.
- For the Text type, available values include for example contains.

6. Build conditions to define both Warning and Critical Thresholds:
 a. Select whether All Child Conditions Must Be Satisfied (AND) or if only At Least One Child Condition Must Be Satisfied (OR).
 b. Select a comparison relation, and provide a threshold value on which the comparison is based.

 ![Example of defining thresholds](image)

 c. Click + to add additional conditions, as required, to define the poller threshold.

7. After configuring all thresholds, click Submit.

If a value reported by the device belongs to the range defined by the Warning Threshold, pollers in maps will be yellow.

If a value reported by the device belongs to the range defined by the Critical Threshold, pollers in maps will be red.
View Universal Device Poller statistics in the Orion Web Console

If you want to see a poller results in the Orion Web Console, you need to define which resources should be displayed on which views.

Prerequisites

The poller must be enabled, and assigned to the devices.

- Set the poller to collect historical statistics. Without historical data, Orion Web Console resources will only display the last polled value, and you cannot add charts with the poller results to the Orion Web Console.

Define resources with UnDP results for Orion Web Console views

1. Click SolarWinds Orion > Network Performance Monitor and start the Universal Device Poller.
2. In the All Defined Pollers pane, select the poller whose results you want to add as a Orion Web Console resource.
3. Right-click the poller, and click Web Display.
4. Confirm that Yes is selected, and select the types of poller resources that you want to display on individual Orion Web Console views.
 - Click Preview to see what the poller resource will look like in the Orion Web Console view.
5. Make sure Do Not Show This Poller If It Is Not Assigned is selected. It ensures that the custom poller resource appears only on views for nodes or interfaces that have the custom poller assigned to them and enabled.
6. Click Finish.

When you log in to the Orion Web Console, the selected resources with poller data will appear on selected views for nodes or interfaces that have the poller assigned to them and enabled.

See also View UnDP status on maps.

View UnDP status on maps

In the Orion Web Console network maps, you can see when a Universal Device Poller on a device returns values that exceed the warning and critical thresholds.

1. Create a Universal Device Poller in the UnDP application.
2. Assign the poller to nodes.
3. Define warning or critical thresholds specifying when you want the pollers to be highlighted.
4. Create a network map in the Network Atlas, drag the UnDPs into it, and save the map.
 - To add a UnDP on a map, start the Network Atlas, navigate to a node on which the UnDP is enabled (Vendor > Node Name > Custom Node Poller), and drag the poller into the map.
5. Log into the Orion Web Console, go to the map view.

6. Locate the Map resource (or add it if not available), click Edit and select your map.

You can now see UnDPs for your nodes in the Orion Web Console map. When the polled UnDP values exceed the warning threshold, the UnDP icon turns yellow on the map. After reaching the critical threshold, the icon turns red.

Assign Universal Device Pollers to monitored devices

SolarWinds NPM provides both a selection of predefined pollers and the Universal Device Poller (UnDP) utility for defining your own pollers to monitor specific aspects of your network devices.

| i | UnDPs are SNMP-based. You can only assign them to nodes polled through SNMP. |

If you do not see a poller that meets your monitoring needs, use the Universal Device Poller to create a poller. See Monitor custom statistics based on OIDs with Universal Device Pollers.

1. Log in to the Orion Web Console as an administrator.

2. Click Settings > Manage Nodes.

3. Select the node, interface, or volume you want to assign Universal Device Pollers to.

| i | The list only includes nodes polled through SNMP. If you cannot see a node, check the polling method, and change it to SNMP. See Add a single node for information about adding nodes, interfaces, or volumes for monitoring. |

4. Click Assign Pollers in the Node Management toolbar.

5. Expand the poller group, and select pollers to assign.

6. Click Submit, and click OK to confirm the assignment.

NPM polls data specified by the poller on the node, interface, or volume.

Cannot find OIDs? Update the SolarWinds MIB Database

SolarWinds maintains a MIB database that serves as a repository for the OIDs used to monitor a wide variety of network devices. The MIB database is updated regularly.

When you are creating a UnDP poller and cannot find an OID in the MIB tree, update the MIB database.

2. On the left under Helpful Links, click Orion MIB Database.

3. If you are using Internet Explorer and it prompts you to add the SolarWinds downloads site http://solarwinds.s3.amazonaws.com, add the site to your trusted sites.

4. Specify a location where the file will download.

5. After the download completes, extract MIBs.zip to a temporary location.
6. Open the folder with the extracted MIBs.zip, and copy MIBs.cfg to the SolarWinds folder on your default install volume. The default location depends on the operating system. For example, on Windows Server 2012, MIBs.cfg is located in `C:\ProgramData\Solarwinds`.

You may need to restart the Universal Device Poller after installing the MIB database.

Manage unique devices on the network

If you have devices on your network that SolarWinds does not recognize for polling, you can either edit an existing poller to suit your device needs, or create a poller specifically tailored to your device.

SolarWinds Orion polls values based on OIDs from the SolarWinds MIB database. There can be OIDs you might want to poll, which are not polled by SolarWinds Orion by default. If these OIDs are in the SolarWinds MIB database, you can create either an UnDP, or use Device Studio to poll for that value, and add support for vendors and technologies that are not natively supported by SolarWinds Orion.

Orion Platform products poll devices based on OIDs according to the device vendor's MIB. These OIDs must be included in the SolarWinds MIB database. When you create custom pollers, you select OIDs from the SolarWinds MIB database. To poll an OID which is not in the SolarWinds MIB database, define it manually. See [Define object identifiers (OIDs) that do not exist in the SolarWinds MIB database](#).

With Device Studio pollers you can:

- Poll devices that do not support any of the OIDs polled for by SolarWinds pollers.
- Poll devices that return incorrect data when polled by SolarWinds pollers.
- Override polled values to display custom static values.
Device Studio technologies

Device Studio supports a number of technologies. Each technology has a defined set of properties that you can monitor on your devices. The technology you select defines how the polled data are processed, stored, and presented.

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU & Memory</td>
<td>CPU & Memory is used for collecting data about the CPU and memory load of single processor systems.</td>
</tr>
<tr>
<td></td>
<td>It provides data to resources related to CPU and memory, such as Average CPU Load & Memory Utilization, Min/Max/Average of Average CPU Load, or Top CPUs by Percent Load.</td>
</tr>
<tr>
<td></td>
<td>To use this technology, specify a single OID that reports a value from 0 to 100.</td>
</tr>
<tr>
<td></td>
<td>For example, if a natively polled OID returns incorrect CPU load values, search for an OID that returns a possible value. In the case of CPU load, the load can vary between 0% and 100%, so you must look for an OID that returns a value between 0 and 100.</td>
</tr>
<tr>
<td></td>
<td>To determine the OID, consult your device vendor, or carry out a search for an OID that reports the correct value for your device.</td>
</tr>
<tr>
<td>Multi CPU & Memory</td>
<td>Multi CPU & Memory provides data to the same resources for multiprocessor systems as the CPU & Memory technology provides for single processor systems.</td>
</tr>
<tr>
<td></td>
<td>For example, if a natively polled OID returns incorrect CPU load values, search for an OID that returns possible values. In the case of CPU load, the load can vary between 0% and 100% on each CPU core, so you must look for an OID that returns a table of values between 0 and 100, where each row corresponds to a CPU core.</td>
</tr>
<tr>
<td>Node Details</td>
<td>Node Details provides data for the Node Details resource, and can be used for devices that are not supported out of the box.</td>
</tr>
<tr>
<td></td>
<td>To use this technology, specify custom OIDs to poll for Vendor, Machine Type, Software Version, and other data. You can also define custom text to be used instead of the polled value.</td>
</tr>
<tr>
<td></td>
<td>Pollers using other polling technologies, such as VLAN and VRF, are also displayed in the Manage Pollers view. However, it is not possible to create pollers using these technologies in Device Studio.</td>
</tr>
</tbody>
</table>

Data sources used in Device Studio

By creating Device Studio pollers, you can define custom polling definitions in a way that allows you to view the defined set of pollers and the data polled by them as fully integrated entities in the Orion Web Console, including charts, alerts, and reports.

You can define a set of polled data, and then associate these data points with monitored nodes.
The data source you use for polling devices can be:

- A polled value or values reported by a device on an OID.
- A calculated value that results from the transformation of polled values.
- A fixed value in the form of a constant number or text. This value is not polled. For example, you can specify the software version of your device as 15.

Create pollers in Device Studio

To poll unique devices or technologies not supported by default, create a custom poller.

Reduce the number of Unknown nodes by creating a custom poller.

1. Click Settings > All Settings, and in the Node & Group management grouping, click Manage Pollers.
2. Click Create New Poller.
3. Select a polling technology, type the Poller Package Name, select a test node, and click Next.

When you are creating the poller, the test node is polled to provide a preview of the results returned by the poller.
4. On the Specify Data Source tab, select a metric you want to define, and click Define Data Source.

5. On the Pick Object Identifier screen, type the OID, or search the MIB database. For information about manually defining OIDs, see Define object identifiers (OIDs) that do not exist in the SolarWinds MIB database.

6. If necessary, click Add Calculated Value to transform the multiple returned values into a single value, or select a different OID.

 Transforming multiple values to a single value is useful if, for example, the device returns CPU usage as a table of four values (with one value for each CPU core), but you want to use a single value for CPU usage. In this case, you can use the Average function to convert the table of values into a single value.

 For more information, see What is a formula?

7. In the Create a Calculated Value screen, select a function, select an input from the lists, and click Test. You can also define a constant value, for example, if you are creating a CPU and memory poller, and the device you want to poll only supports CPU values.

 Continuing with the previous example, to create an average value out of the four reported values, select the Average function and specify the input values.
For more information, see [Formulas used for transforming Device Studio poller results](#).

8. After testing whether the value is as expected, click Yes, the Data Source Is Reasonable.

9. To automatically test the poller on newly added nodes, select Automatically poll nodes during network discovery, and click Next. The test determines whether the Device Studio poller can be assigned to the newly added node.

10. On the Summary tab, review the poller package settings, and click Submit.

The poller is now available in the list of pollers, and you can assign it to nodes.

Define object identifiers (OIDs) that do not exist in the SolarWinds MIB database

1. On the Pick Object Identifier screen, select the check box under Manually Define Object Identifier (OID).
2. Type the name and OID.
3. Select the SNMP get type. See [What is the SNMP Get Type?](#) for more information.
4. Click Poll Current Value From Test Node.
What is the SNMP Get Type?

The SNMP Get type defines the type of query you have to run to retrieve the appropriate information. You can retrieve scalar values by using either GET or GET NEXT, and you can retrieve values from a particular column in a table value by using GET TABLE.

For table records, only the first five values are returned.

What is a formula?

Values polled by a custom poller are often better understood after a calculation transforms the value to a different format. For example, if a poller returns values in MB, you might want to work with the values presented in GB. The calculations and transformations that are used to manipulate poller results are called formulas.

Two types of values or data sources are available:

- Scalar: one value
- Tabular: column of values

When a new data source is created, the name is generated automatically according to the syntax:

<Property name>Formula<Number>

For example: UsedMemoryFormula1

Formulas used for transforming Device Studio poller results

<table>
<thead>
<tr>
<th>FORMULA</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>KiloToByte</td>
<td>Multiplies input by 1024</td>
</tr>
<tr>
<td>MegaToByte</td>
<td>Multiplies input by 1024 x 1024</td>
</tr>
<tr>
<td>GigaToByte</td>
<td>Multiplies input by 1024 x 1024 x 1024</td>
</tr>
<tr>
<td>Average</td>
<td>Returns the average of values from the input columns</td>
</tr>
<tr>
<td>Sum</td>
<td>Returns the sum of values from the input columns</td>
</tr>
<tr>
<td>Count</td>
<td>Returns the total number of input columns</td>
</tr>
<tr>
<td>Condition</td>
<td>Creates an if/then statement</td>
</tr>
<tr>
<td>Truncate</td>
<td>Rounds the input decimal number up or down to an integer</td>
</tr>
<tr>
<td>Length</td>
<td>Returns the number of characters in the input string</td>
</tr>
<tr>
<td>Replace</td>
<td>Replaces the content in the string</td>
</tr>
<tr>
<td>IndexOf</td>
<td>Returns the position in the string</td>
</tr>
<tr>
<td>SubString</td>
<td>Defines the section of the string of interest</td>
</tr>
</tbody>
</table>

The formulas are divided into three main groups.
<table>
<thead>
<tr>
<th>TYPE OF FORMULA</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformations</td>
<td>Transform data between different units. For example, transform megabytes to bytes.</td>
</tr>
<tr>
<td>Aggregations</td>
<td>Transform the values from the input table columns to scalar values. For example, transform the values from the input columns into the average of values.</td>
</tr>
<tr>
<td>Conditions</td>
<td>Transform values according to a logical formula according to the following syntax: if(logical formula), (action to perform if formula is true), (action to perform if formula is false)</td>
</tr>
</tbody>
</table>

Example syntax

SubString

The SubString(,) calculation takes the following syntax:
SubString ([formula],index start,length)

For example, if your input is "test", the output will be "es" if you use the following calculation:
SubString ([UsedMemoryFormula],1,2)

As another example, if your input is "test", the output will be "st" if you use the following calculation:
SubString ([UsedMemoryFormula1],2,2)

Replace

The Replace(,) calculation takes the following syntax:
Replace([formula],search string,replacement string)

For example, if your input is "test", the output will be "resr" if you use the following calculation:
Replace([UsedMemoryFormula1],"t","r")

Use Regex formulas for transforming poller results

When you define a Regex formula, use the following syntax:
Regex([variable],"regular expression")

Examples of correct formulas include:

- Regex([description],"^[a-zA-Z][^,]*")
- Regex([description],"V.[^]*")
- Regex([description],"(T.*)")
- Regex([description],"(C[^]+)")

Limitations of Regex formulas

When you define a Regex formula, the input string from the test device is interpreted up until the nearest \r (new line) character.
The following methods of defining Regex formulas are not supported:

- A backslash sequence for special characters such as the following: (,) {,} ..
- Grouping regular functions such as the following: \w, \W, \s, \S.
- Defining multiple conditions in square brackets such as the following: [^ , -].

Test Device Studio pollers

A Device Studio poller may not always be seamlessly supported by the device it is tested on. For example, errors occur if the OID the Device Studio poller polls for is not supported by the device, or if the returned value is not of the expected data type defined by the Device Studio poller.

To get the Device Studio poller working in your environment, try the following:

- Test the Device Studio poller on a different node.
- If the device you use for testing is not fully compatible with the Device Studio poller, upgrading the firmware of your test device might help.
- Modify the Device Studio poller to suit the devices you have. For example, you can modify the OID that is used to poll the device.

Monitor devices using THWACK community pollers

Apart from creating your own Device Studio pollers, you can also import pollers provided by contributors of the THWACK community.

The THWACK community pollers are available in the Orion Web Console under Manage Pollers > THWACK Community Pollers. The list is updated automatically every 30 minutes, and it contains the device pollers that have been made available on THWACK, under Network Performance Monitor > NPM Content Exchange > Device Pollers > Documents.

You can group the available pollers according to tags, author, or technology. Click the name of a device poller to view the description of the poller.

To verify whether a poller suits your specific device, test the poller before importing it.

Test THWACK Device pollers

1. Select the THWACK community poller from the list, and click Test Device Poller.
2. Type your THWACK credentials, and click Submit.
3. Select an SNMP node for testing, and click Test Poller.

After the test is finished, you can directly assign the device poller to the test node.
Import Device pollers from THWACK

1. Select the THWACK community poller from the list, and click Import Device Poller.
2. Type your THWACK user credentials, and click Submit.
3. After the import is finished, the poller will be available in the Local Poller Library, and you can assign it to a device. For more information, see Assign Device Studio pollers to monitored devices.

If the poller was already imported earlier, you can either overwrite the existing poller, or create a new one.

Import THWACK community pollers to an environment without Internet connection

The THWACK community pollers are only updated automatically if you have a working Internet connection. To import THWACK community pollers to an environment that does not have an Internet connection, download the pollers from a computer which can access the Internet, save them to a portable drive or a USB drive, and import them manually.

Export Device Studio pollers to the THWACK community

1. On the Manage Pollers screen, click the Local Poller Library tab, and select a poller.

You can export Device Studio pollers that you created, but you cannot export pollers that are provided by SolarWinds.

2. Click Export, and select Export to Thwack.
3. Type your THWACK user credentials, and click Submit.

If you already logged in to THWACK from the Orion Web Console during the same session, you do not have to enter your credentials again, and the Device Studio poller will be exported immediately.

The Device Studio poller will be available on THWACK, in the Network Performance Monitor > NPM Content Exchange > Device Pollers > Documents section.

Why can’t I connect to THWACK?

Your Orion server must be able to open internet connections to connect to THWACK. If the connection is blocked by a firewall or a proxy the list of shared pollers cannot be retrieved from THWACK, and any operation that relies on communication with THWACK, such as the upload or download of a poller will fail.

Check your firewall and proxy settings to make sure that your Orion server can connect to the internet.

Assign Device Studio pollers to monitored devices

Specify devices on which you want to poll the statistics defined by the poller.

1. On the Manage Pollers page, select a poller, and click Assign.
2. Select the node you want to assign the poller to.
3. If the node has not been scanned yet, click Scan Now.
4. If the scan result is a match or a multiple match, select the node, and click Enable Poller.

You can only scan SNMP nodes whose status is Up.

Scan monitored objects to verify if the OIDs match

When a monitored node is scanned, the OIDs of the monitored node and the OIDs specified in the poller are compared to see if they match.

These scenarios are possible:

- If the OIDs do not match, the scan returns a result indicating the mismatch, and the poller cannot be assigned to the monitored node.
- If the OIDs match, and there is no other poller supporting the specific technology, then the poller is automatically enabled on the node.
- If the OIDs match, but there is already another poller for the technology, the new poller is not enabled. You can enable the poller manually. See Assign Device Studio pollers to monitored devices.
Integrate an Orion Platform product with ServiceNow

Integrate your Orion Platform product with ServiceNow® to automatically open new ServiceNow tickets based on critical events defined in your Orion Platform product.

The integration with ServiceNow allows for two-way communication between your Orion Platform product and ServiceNow. By integrating the two systems, you can:

- Automatically create incidents in ServiceNow and assign them to the correct tech or group
- Synchronize the acknowledgment of alerts and tickets in SolarWinds Orion and ServiceNow
- Update, close, and reopen tickets
- Suppress ticket storms

You can integrate one Orion Platform product with multiple ServiceNow instances.

The integration requires NPM 12.0, SAM 6.3, or any other Orion Platform product running Core version 2016.1 or later.

Before you begin

Before you can configure the integration details in your SolarWinds Orion product, check the prerequisites and configure your ServiceNow instance.

- The communication between the SolarWinds server and the ServiceNow instance uses HTTPS port 443. Open this port for outbound communication.
- For minimum hardware and software requirements, see the administrator guide of your product.
- Download the ServiceNow integration application from the ServiceNow app store.
- Install the integration app and configure your ServiceNow instance for the integration.
- SolarWinds does not integrate with ServiceNow Express or on-prem offerings.

Install and configure the SolarWinds Alert Integration application in ServiceNow

The SolarWinds Alert Integration application enables the communication between your SolarWinds server and the ServiceNow instance.

After downloading the SolarWinds Alert Integration application from the ServiceNow store, deploy the application in ServiceNow.

1. Navigate to your downloaded system applications.
2. Locate the SolarWinds Alert Integration application, and click Install.
When the installation is complete, the caption of the Install button will change to Installed.

After the installation is complete, SolarWinds recommends that you create a ServiceNow integration user with Web service access only.

Create a ServiceNow integration user with Web service access only

1. Navigate to the user administration section in ServiceNow, and create a new user.
2. Provide a user ID, a password, and other required information.
3. Specify that the new user should have Web service access only.
4. Edit the newly created user, and add the x_sow_intapp.integration_user role to the role list.

After installing the integration application and creating an integration user, you can now configure the integration with ServiceNow in your SolarWinds Orion server.

Configure an Orion Platform product with ServiceNow

After completing the configuration of the integration in ServiceNow, you can configure the integration to be able to automatically create, update, and resolve alerts that were raised in your Orion Platform product in your ServiceNow® instance.

1. In the Orion Web Console, click Settings > All Settings.
2. In the Alerts & Reports group, click ServiceNow Instances.
3. Click Add Instance.
4. Enter a name and the URL for the ServiceNow instance.
5. Enter the ServiceNow credentials:
 - Username
 - The user name of the account that is configured for the SolarWinds integration role.
 - Password
6. Test the connection to your ServiceNow instance. If the connection is not working, you receive descriptive messages to help you solve the issue.
7. If you are accessing your ServiceNow instance through a HTTP proxy, select Use a HTTP proxy server, and click the Configure your HTTP proxy settings link to edit the details. For more information, see Configure web proxy settings.
8. Click Save.

Configure web proxy settings

If your SolarWinds Orion server does not have Internet access, you can use a proxy server to allow the Orion server to connect to certain pages and websites. Use a proxy server to:

- Access the THWACK community
- Access the product blog
• Check for maintenance updates
• Access the ServiceNow® instance you integrated with your SolarWinds Orion server. For information about integrating SolarWinds Orion with ServiceNow, see Integrate an Orion Platform product with ServiceNow.

To configure web proxy settings:

1. In the Orion Web Console, click Settings > All Settings > Product specific settings > Proxy Settings.
2. Select Use the following settings, and specify the IP address and port number of the proxy server.
3. If the proxy server requires authentication, select the check box, and specify the user name and password.
4. Enter a URL, and click Test connection to verify that you can reach the destination address through the proxy.
5. Click Save.