Interoperability of Heterogeneous Information Systems

ITU-T Recommendation X.1255
Discovery of Identity Management Information

Robert E Kahn
Corporation for National Research Initiatives (CNRI)

NITRD Presentation
December 3, 2013
Framework for Discovery

- X.discovery is an approved ITU Recommendation about a framework for discovery of “Identity Management Information”
- However, problem is the same as discovery of any kind of information
- So, the framework is applicable to any discovery application and also to any access requirement
- It is thus a generic framework to discover and access any kind of information in digital form
- In systems that adhere to the overall framework and participate in the discovery/access process
What Problem is being solved?

- Multiple Information Systems
 - Of different kinds
- Information desired is not always available from a given system
- But can be made available from another system – if it can be discovered and accessed
- How can this best be accomplished?
Comparison with the Original Internet Challenge

- Multiple networks and computers
 - Of different kinds
- Connectivity may require traversing multiple networks to reach the destination
- How to discover and access the desired destination network and computer?
- Basic solution – protocols and procedures
 - Such as TCP/IP and gateways (now routers)
Bindings to Technology vs. Information

• Arpanet – 16 bit addresses → wires
• Internet – 32 bit IP addresses → machines
• Web - URLs → <IP Address/filename>
• Digital Object Architecture → state information about the desired information such as access means, multiple locations, authentication, public keys, terms and conditions for use, etc.
Some Terminology

• Digital Entities (DEs) & Digital Objects (DOs)
 – An Entity is something that has a separate existence and are capable of being uniquely identified.
 – Digital Entity is an entity represented as or converted to a machine independent data structure consisting of one or more elements in digital form that can be parsed
 – A DE is a more abstract notion of a DO – both are structured data with a unique persistent identifies.

• Unique Persistent Identifiers
 – resolvable in the Internet to “state information” or to produce relevant metadata
 – Used to discover and access DOs

• Generic types
 – Each DO consists of multiple elements of <type,value>

• Other components store digital objects, metadata
 – Namely DO Repositories and DO Registries
Multiple Information Systems

User or User System

Lots of Digital Objects
Framework for Discovery

- X.discovery is an approved ITU Recommendation about a framework for discovery of “Identity Management Information”
- However, problem is the same as discovery of any kind of information
- So, the framework is applicable to any discovery application and also to any access requirement
- It is thus a generic framework to discover and access any kind of information in digital form
- In systems that adhere to the overall framework and participate in the discovery/access process
Digital Object Architecture

- **Digital Object Data Model & Protocol**
 - Logical interface to heterogeneous information management and storage systems
 - Built-in strong authentication and encryption

- **Digital Object Repository**
 - Implements the digital object data model and protocol
 - Portal into multiple info and storage systems
 - Security is at the object level & objects can be securely shared
 - Current version successfully used by industry and government

- **Handle System**
 - Highly scalable identifier resolution system for digital objects
 - Provides referential integrity as objects move and environments change
 - Proven and in wide use

- **Digital Object Registry**
 - Manages metadata records about resources
 - Assigns handles to metadata records and resources
 - Normalizes organizational boundaries through commonly agreed API’s and metadata models
• Each Object contains structured data and extensible metadata

• Metadata includes types, dates, permissions, and other relevant attributes
DO Repository Notion

DOIP
Digital Object Interface Protocol

Logical External Interface

Any Hardware & Software Configuration

DO Repository
DO Interface Protocol
Operations on Digital Objects

• An operation on a digital object consists of the following elements:
 – User ID: The identifier of the entity requesting invocation of the operation
 – ObjectID: The identifier of the digital object to be operated upon
 – OperationID: The identifier that specifies the operation to be performed
 – Input: A stream of bytes that contains the input for the operation, including any parameters, or content
 – Output: A stream of bytes that contains the output of the operation, including any content or messages

• All identifiers are handles or more generically digital object identifiers

• Examples of operations:
 – Create object
 – Update data element
 – Get data element
 – Delete data element
 – Delete object
 – And so on
Digital Object Interface Protocol

- Establish Connection with the desired resource
 - Currently using TCP/IP but other protocols are possible
- (Optionally) Validate the target resource
- If valid, present the request string
 - `<input><operation ID><object ID> <parameters><output>`
- (Optionally) Validate the User
- Fulfill the request or terminate the request
- If last active user on the connection, disconnect or
- Repeat the above without reconnecting
Handle String

• `<prefix> / <suffix>`

• Examples
 – 11.1002/1000/11951-en
 – 4263537/5030

• Character Set: Unicode 2.0

• Encoding: UTF-8

• Prefixes
 – Currently allocating only numeric TLPs
 – Alphanumeric allowed everywhere else
The Handle System is a collection of local handle services, each of which consists of one or more replicated sites, each of which may have one or more servers.
Handle System

• Provide basic identifier resolution services
 – Resolves digital object id to current state data
 – Id can persist over changes in location, ownership, and other attributes
 – Only the state data changes
• System currently consists of a Global Handle Registry (GHR) and many distributed local handle services
 – Each service responsible for defined subset of id space
 – Each service, including the GHR, can itself be distributed and consist of many servers – thus is scaleable
• Resolution returns type/value pairs
 – Typing is itself scaleable; handles are used as type identifiers
 – No limit on number and length of type/value pairs
 – Each value includes permissions and time to live (TTL)
• Distributed handle administration in the Internet
• Handle System Protocol runs over UDP, TCP, or HTTP
• System is compatible with IPv4 and IPv6
• More information at handle.net site; RFCs 3650 - 3652
Present Administration of the GHR

MM = Mirrors
Future Administration of the GHR

We call these Multi-Primary Administrators or simply MPAs
What is Metadata

- People commonly define metadata as “data about data”
- A more complete definition:
 - Metadata is a set of (structured) assertions about an entity/resource
 - Multiple parties may make those assertions
 - Veracity of those assertions is usually outside the scope of metadata
- Those assertions could be about:
 - **Identity**
 - what is the resource called?
 - **Provenance**
 - who created the resource?
 - **Access**
 - who views and admins the resource?
 - **Description**
 - what is the resource about?
 - How to interpret it?
 - **Technical**
 - in what stage is the lifecycle?
 - **Structure & Representation**
 - how is the resource formatted and encoded?
Registry Design: Metadata Design

• **Identify the model(s)**
 – What is the registry for? Books, Movies, Documents, etc.
 – Oftentimes, a registry manages multiple models: Books and Publishers, Movies and Actors, etc.
 – Include models for *user* and *group* if ownership and sharing functionality is needed

• **Identify the properties for each model**
 – What do you want to capture about Books? title, description, author, genre, publisher, etc.

• **Identify the attributes for each of the properties**
 – What is title’s data-type? text? How about genre’s? controlled vocabulary?
 – Do you expect multiple titles for a Book? Probably not. Do you expect at least one title to exist? Probably yes.
 – Handles: Which properties should have separate identifiers?
Registry Design: Metadata Design (cont’d)

• **Identify the structure of the properties**
 – Perhaps author property is more than just a name. Author could be a parent node to name, address and organization properties

• **Identify the locale characteristics**
 – What natural languages are expected in metadata?
 – What formats are expected for a date property? MM-DD-YYYY or DD-MM-YYYY

• **Identify the representation**
 – What are the input and output formats? XML, JSON?

• **Design a schema based on answers to above questions**