Name:	Student ID:
Physics 9A Lab R	Report #6
Answer all the questions below, and include explanations or calculatese.	tions based on the data to backup your answers in each
I. Elastic Collision #1 (equal masses)	
 Consider the impulses delivered to the carts in the colli a. Is Newton's third law, expressed in terms of impuls 	
b. Is the impulse-momentum theorem confirmed?	
2. Examine the data in terms of momentum conservation.a. Determine whether momentum is conserved using	
b. Does the momentum of the system appear to ren Explain.	nain constant during the collision? Should it be?
 Examine the data in terms of kinetic energy conservation. Determine whether kinetic energy is conserved upgraphs. 	
 b. Does the kinetic energy of the system appear to re Explain. 	emain constant during the collision? Should it be?

II. Elastic Collision #2 (unequal masses)

4.		nsider the impulses delivered to the carts in the collision. Is Newton's third law, expressed in terms of impulse, confirmed for this collision?
	b.	Is the impulse-momentum theorem confirmed?
5.		namine the data in terms of momentum conservation. Determine whether momentum is conserved using the before and after pinpoint values in the graphs.
	b.	Does the momentum of the system appear to remain constant <i>during</i> the collision?
6.	a.	namine the data in terms of kinetic energy conservation. Determine whether kinetic energy is conserved using the before and after pinpoint values in the graphs.
	b.	Does the kinetic energy of the system appear to remain constant <i>during</i> the collision?

III. In	elastic Collision (Note: Some of these questions are different from those above.)
7.	Consider the impulses delivered to the carts in the collision. a. Is Newton's third law, expressed in terms of impulse, confirmed for this collision?
	b. Is the impulse-momentum theorem confirmed?
	c. In this run there is a small but undeniable dip in the force-vstime curve for both carts, just after the main "bump." Interpret what this apparent anomaly is telling us is happening physically.
8.	Examine the data in terms of momentum conservation. a. Determine whether momentum is conserved using the before and after pinpoint values in the graphs.
	b. Does the momentum of the system appear to remain constant <i>during</i> the collision?
9.	Examine the data in terms of kinetic energy conservation. a. Find the kinetic energy lost using the before and after pinpoint values in the graphs.
	b. Confirm that this matches what is supposed to be lost for such a collision.