

 1 TB-210701-v03

 Pure Storage Proprietary Information

FLASHARRAY™ FILE SERVICES

Native file systems extend FlashArray’s applicability

FlashArray is well-established as the premier all-flash block storage system for enterprise data

centers, presenting disk-like virtual volumes (LUNs) to host computers whose software file

systems impose structure on stored data. Enthusiastic users have long wished that FlashArray

performance, reliability, ease of use, and Evergreen™ immunity to product end of life were

available for file data—home directories, project shares and so forth. To meet their needs, Pure

Storage has developed FlashArray File Services (usually called simply FA Files), adding native file

system capability to the FlashArray line. Architecturally, FA Files is a peer of the arrays’ block

volume services; both utilize the same underlying virtual and physical storage layers. This brief

describes how FA Files extends the architecture that has made FlashArray the industry’s

benchmark for block storage to make the same qualities available for shared files.

FLASHARRAY FILE SERVICES
FA Files operates either alone or concurrently with FlashArray volume services. It supports the

features that enterprises require from file servers:

⊲ Support for up to 500 million files1 in as many as 24 file systems

⊲ Thin provisioning (occupies no space for “sparse” file byte ranges in which no client has
ever written data)

⊲ SMB (versions 1-32) and concurrent NFS version 3 client access, including cross-protocol
coordination of byte-range locks and client-side locking. The SMB implementation was
developed entirely by Pure Storage engineers; it does not utilize any pre-existing or third-
party technology

⊲ Shares (exports) of different file system subtrees with different client access permissions

⊲ Active Directory (AD) and Lightweight Directory Access Protocol (LDAP) authentication
with Kerberos support for SMB clients, as well as NTLM for older Windows clients

⊲ Ad hoc and automatic (policy-based) space-saving snapshots of data

⊲ Quotas that restrict storage space consumption on a per-managed directory basis.3

1 Smaller array models may have lower maximums.

With product management approval, larger arrays can support up to one billion files in selected applications.
2 Use of SMB version 1 is discouraged due to security deficiencies that are remedied in later versions. Version 3 support is limited—

transparent failover, multi-channel, and persistent handles are not supported.
3 Managed directories are a unique FA Files feature. They are discussed starting on page 4.

 2 TB-210701-v03

 Pure Storage Proprietary Information

When File Services is enabled on an array that also provides

volume services, a portion of the array’s primary controller

resource is dedicated to it, but file and volume data are intermixed

on flash. No per-file system provisioning or reservation of capacity

is necessary, or indeed possible.

THE FA FILES ARCHITECTURE
The conceptual storage system software model in Figure 1 helps

to understand how FA Files fits into FlashArray’s Purity//FA

software architecture. Whether a storage system presents blocks,

files, or objects to clients, it typically contains the four layers

shown in the figure:

Protocol(s)
Receives commands from and data written by client
computers (usually called hosts in block storage contexts)
and responds to reads with requested data

Data Model
Organizes stored data as files, volumes, objects, or other models. Implements data model
semantics and manages the space presented by the virtual storage layer

Virtual Storage
Presents storage to the Data Model, typically virtualized to enhance I/O performance, data
reliability, flexibility, or a combination of the three. Common techniques include caching,
mirroring, striping, and RAID.

Physical Storage
Ultimately, systems store data in some form of persistent memory, the most common being
flash, magnetic disk, and tape. This layer includes driver software that controls storage
devices and transfers data to and from them.

MODELING FLASHARRAY

Figure 2 illustrates FlashArray’s Purity//FA software architecture in the context of the model in Figure 1. In

particular, the figure shows how Purity//FA

provides coequal volume and file services:

Protocol(s)
At the protocol layer, Purity//FA
Volume Services communicates
with hosts using any of the FCP,
iSCSI and NVMe protocols
carried on Fibre Channel and
Ethernet storage networks.
File Services communicates with

Figure 1: A Generic Model for

Storage Systems

Figure 2: FlashArray’s Purity//FA Architecture

 3 TB-210701-v03

 Pure Storage Proprietary Information

clients using either the Server Message Block (SMB) or Network File System (NFS) protocol
via TCP/IP connections on Ethernet networks.

Data Model
Volume Services presents disk-like virtual volumes to hosts, and controls host access,
volume resizing, immutable atomic snapshots, and so forth.
File Services presents hierarchical file systems to clients via NFS and/or SMB. File Services
controls client access, file system resizing, and immutable atomic snapshots.

Virtual Storage
Both Volume and File Services utilize the same virtual storage layer. Arrays present virtual
storage in the form of metadata structures that they to locate data on physical storage. The
structures allow identical content to be shared by volumes, files, and snapshots.

Physical Storage
Purity//FA allocates flash storage in segments distributed across multiple devices to
optimize I/O performance and failure tolerance. To conserve physical storage space, the
software reduces (globally deduplicates and compresses) incoming data before storing it.
Multiple RAID checksums protect against data loss due to read failures.

INSIDE FA FILES
As Figure 2 illustrates, FA Files is a peer capability to FlashArray Volume Services. Both utilize the

same virtual and physical storage substrate. Two key advantages of the common underpinnings

are:

Identical Features for Volume and File Services
Volume and File Services organize data and store it persistently on flash in the same way,
so the well-known features of FlashArray volumes—data reduction, automatic rebalancing,
always-on encryption, recovery from read failures, eradication delays, and so forth—proven
by nearly a decade of field experience in thousands of arrays, are also features of FA Files.

Simultaneous Volume and File Access
Most FlashArray models support volume and file services simultaneously. In many cases a
FlashArray eliminates the need for separate file and block storage systems.

THE DATA MODEL LAYER

The FA Files Data Model implementation is a protocol-independent Virtual File System (VFS) that

provides identical services to SMB and NFS clients. VFS achieves this through an intermediate

Data Store, similar to a conventional object store, that communicates with the FlashArray Virtual

Storage layer. The Data Store manages virtual storage for VFS, and provides the scalability and

performance needed to support hundreds of millions of files in a system.

 4 TB-210701-v03

 Pure Storage Proprietary Information

THE DATA STORE

In conventional file servers, file system software manages

storage directly. The Purity//FA Virtual and Physical

Storage layers are more versatile in that they reduce

data, protect against read failures, and rebalance data

automatically. The VFS Data Store isolates file system

namespace management and semantics from direct

interaction with storage.

The Data Store is a highly scalable key-value store that

provides a single flat space of items (key-value pairs) with

no awareness of file system hierarchies or semantics. VFS

uses it to implement file system namespaces and to store

both directory structures and file attributes and contents.

The Data Store resembles a conventional object store in

that each key has a corresponding value that holds data and/or metadata. It differs, however, in

that it supports overwriting ranges of bytes within a value, a property necessary to allow clients to

overwrite byte ranges within a file. When a client writes data to a file, VFS overwrites only the

blocks that include the range.4 The storage layers append the overwritten blocks to the array’s

log and update metadata to reflect the data’s new locations on flash.

4 Purity//FA stores data in an append-only log that intermixes file and volume data, so “overwriting” is conceptual.

Figure 3: The FA Files Data Store

 5 TB-210701-v03

 Pure Storage Proprietary Information

MANAGED DIRECTORIES

VFS provides a protocol-neutral directory hierarchy Data Model for use by both SMB and NFS

clients. Clients use POSIX or Windows APIs to manipulate directories in shares to which they

have been granted access.

The client-visible file system roots created by array administrators are called managed

directories. Administrators can also create up to three levels of subordinate managed directories

under them. Managed directories differ from ordinary

directories in that:

⊲ Client-visible file system root and immediate
descendant managed directories are the FA Files
entities that administrators share with (export to)
clients. The two lower levels of managed
directories cannot be shared independently

⊲ Only array administrators create and delete
managed directories. They can only be deleted
when they are empty and all shares have been
removed or disabled
As with conventional file systems, clients create
and delete ordinary directories

⊲ Administrators can assign quotas to managed
directories to limit the amount of space they may
consume. Space consumption is calculated on
data as written by clients before reduction

⊲ Administrators can attach policies to managed
directories to control client access and specify
snapshot schedules.

⊲ Files and subtrees cannot be moved from one
managed directory to another, nor can hardlinks cross managed directory boundaries5

A single file system can host thousands of managed directories. The top two levels of managed

directories are the units in which data is shared with (exported to) clients. Sharing managed

directories, each with its own client access and snapshot policy and quota, obviates the need for

each application to have a separate file system in most cases. Managed directories are

appropriate for data sets that are expected to remain on the same array throughout their

lifetimes, whereas separate file systems may be preferable for unrelated data sets that may be

treated differently in the future (e.g., migrated to different arrays). FA Files users may wish to

consult their Pure Storage system engineers about data set organization.

5 These restrictions may be relaxed at some future time.

Figure 4: Managed Directories

 6 TB-210701-v03

 Pure Storage Proprietary Information

THE VFS HIERARCHY

Internally, VFS uses the Data Store to

implement a single system-wide hierarchy that

is not exposed to clients. The hierarchy contains

system-wide metadata, file systems, and per-file

system metadata. Figure 5 illustrates its major

elements:

System root
Root of the VFS internal hierarchy. Not
exposed to clients

Internal file system roots (fs1, fs2,...)
A VFS-internal root for each file system.
Contains file system metadata (shares,
snapshot policies, access permissions,
etc.). Not exposed to clients

Client-visible roots (fs1-root, fs2-root,...)
Managed directories exposed to clients
as file system roots. VFS creates these
when array administrators create file
systems. Administrators can create up to
three levels of subordinate managed directories, the topmost of which can be exported

.snapshot directories
Each share organizes its snapshots in a .snapshot directory. FA Files snapshots are
immutable—while they exist, their contents cannot be altered. They are visible to clients as
read-only descendants of the file system’s .snapshot directory. Users can browse
snapshots, read the files in them, and retrieve files for use by copying them to their original
or other locations.

Figure 5: The VFS Internal Hierarchy

 7 TB-210701-v03

 Pure Storage Proprietary Information

 FILE SYSTEM STRUCTURAL INTEGRITY: ENVELOPES

All changes to the hierarchy shown in Figure 5,

both internal to FA Files and visible to clients, are

transactional. VFS guarantees atomicity for

operations that affect file system structure, such as

creating, appending, truncating, and removing files,

and changing attributes, access permissions, and

snapshot schedules. If an array fails while they are

executing, they are reflected either in their entirety

or not at all after restart.

Purity//FA makes structural changes transactional

by writing sets of metadata objects called

envelopes to the Data Store. Envelopes contain

directories with lists of files, attributes, and other

pertinent metadata as well as journals. Periodically,

the software refreshes envelopes by applying

accumulated journal entries to their contents. Using Data Store transactions to make journaling

and envelope refresh atomic ensure the VFS hierarchy’s structural integrity after recovery from

array failures. After a restart, the hierarchy contains either pre- or post-update envelopes, but no

partial updates that could result in structural inconsistencies.

Envelopes protect the integrity of the hierarchy, but as with any network file system, client

applications that use FA Files must provide for recovery from any failures of the server or

client that occur while they have writes in progress.

STORING DATA AND METADATA

VFS uses Data Store keys to construct the file system hierarchy illustrated in Figure 5. Using the

Data Store as an intermediary, it persists data and metadata on flash. Each Data Store item

consists of a key and a value (data or metadata item) of arbitrary size.6 The Data Store uses

Virtual Storage layer services to write items on flash and retrieve them on request.

Each file managed by VFS is represented as a Data Store item. The Data Store manages files

similarly to the way in which FlashArray Volume Services manages volumes, using common

metadata structures to map virtual addresses to the flash location(s) of current data. With this

6 FA Files supports files of up to 64 terabytes in size.

Figure 6: Envelopes

 8 TB-210701-v03

 Pure Storage Proprietary Information

approach, Purity//FA provides the same performance, resiliency, and data reduction for both files

and volumes.7

The Physical Storage layer allocates flash in which it stores volume and file data from a single

free space pool. Like volumes, therefore, files are inherently thin-provisioned—aside from the

metadata that describes them, they occupy physical space only to contain the data that clients

write to them. The Physical Storage layer stores file and volume data written by clients and

metadata in a single log in approximate order of arrival.

SECURING FLASHARRAY FILES
FA Files controls client and user access to data and protects data against both misappropriation

and loss due to user and administrator errors.

CONTROLLING CLIENT AND USER ACCESS

FlashArray administrators limit access to FA Files services to specific subsets of an array’s

Ethernet ports with virtual network interfaces (VIFs) through which an array presents shares.

Arrays connect to any of LDAP (for NFS), NTLM (for older Windows servers), or AD (for NFS and

SMB) servers to authenticate individual users before granting access to shares for which array

administrators have authorized them. Alternatively, arrays can manage authentication locally.

PROTECTING FILE DATA AGAINST MISAPPROPRIATION

Purity//FA’s Physical Storage layer applies AES-256 encryption to all data and metadata before

writing it on flash. Encryption is “always-on”—it is not an option. Thus, even if flash devices were

removed from an array and could somehow be read, data

would not be exposed. The software manages data

encryption keys internally; it never exposes them on any

external interface.

For situations in which network security is questionable,

FA Files supports SMB’s on-the-wire data encryption.

SMB clients encrypt data before sending it to the array;

the FA Files Protocol layer decrypts it prior to processing,

to allow deduplication and compression. The Physical

Storage layer encrypts all file and volume data after

reducing it but before staging it in NVRAM or writing it on

flash. Thus, encrypting data on the path between SMB

clients and FlashArrays secures it from point of origin to

retrieval without sacrificing the benefit of data reduction.

7 That a software architecture created to support hundreds of volumes scales to hundreds of millions of files is a testament to its

versatility.

Figure 7: SMB “on the wire”

Encryption

 9 TB-210701-v03

 Pure Storage Proprietary Information

PROTECTING DATA AGAINST USER AND ADMINISTRATOR ERRORS

FlashArrays provide two facilities that protect against file and volume data loss due to user,

administrator, and application errors:

Snapshots
Purity//FA takes point-in-time (logically
instantaneous) snapshots of managed
directories, either automatically on
administrator-specified schedules or on
administrator command. Snapshots are
effectively read-only versions of managed
directory contents at specific points in time.
They can be destroyed by an array
administrator, but their contents cannot be
altered. They are visible to clients as
descendants of the .snapshot
subdirectories of managed directories.
To restore data items to a point in time prior
to a data loss or corruption event, a user
would delete the corrupt items from the live
file system and replace them by copying
content from the appropriate snapshot.

Snapshots consume physical storage only
when clients alter data in the managed
directories on which they are based. Typically, administrators automate snapshot creation
by attaching policies that specify frequency and retention to managed directories.
Snapshots can be scheduled as often as every five minutes. Purity//FA automatically
destroys them after the retention times specified in the policies that govern them.

Eradication delays
When an array administrator destroys8 a snapshot, it becomes inaccessible to clients
immediately, but it is recoverable for 24 hours before Purity//FA eradicates its contents.
During that time, an administrator can restore it for client use. If physical space is urgently
required, an administrator can eradicate destroyed snapshots, commencing background
reclamation of the storage they occupy. Once a snapshot is eradicated, whether through
lapse of the 24-hour grace period or by administrator command, it cannot be restored.

8 Pure Storage CLI commands use the term destroy to direct removal of objects that contain data stored by users. For other

objects, it uses the more conventional delete.

Figure 8: Snapshots of Managed Directories

 10 TB-210701-v03

 Pure Storage Proprietary Information

SAFEMODE

Snapshots can help protect against ransomware and other forms of malware by providing valid

copies of data that attackers have encrypted or corrupted. To prevent attackers from destroying

snapshots, users can enable SafeMode for enhanced protection. When SafeMode is enabled,

live cooperation between Pure Storage Support engineers and designated trusted customer

representatives is required to destroy snapshots or alter schedules.

USING FA FILES
All but the smallest current FlashArray models support FA Files.9 Readers are advised to consult

with Pure Storage representatives to identify array models to meet their file and volume storage

and performance requirements.

CONTROLLING CLIENT ACCESS TO FILE DATA

Client computers connect to FA Files shares via VIFs that include some or all of an array’s

Ethernet ports. Transparent failover and non-disruptive upgrade require that each VIF include

one or more ports on each of an array’s controllers.

Array administrators can create access policies that specify rules for client access and associate

the policies with shares. Access policies are independent FA Files objects. Any policy can be

associated with any share. Administrators manage access policies by adding and removing rules

that specify client access permissions and by enabling and disabling entire policies. Modifications

to a policy immediately affect all shares with which it is associated.

ACCESSING FILES VIA SMB AND NFS

FA Files is not a single-protocol implementation with add-on support for a second protocol. It

uses VFS to read, write, and manage files whether clients access them via SMB or NFSv3. The

Protocol layer adheres to SMB and NFSv3 locking rules and blocks attempts by clients using

NFSv3 to access byte ranges locked by SMB. However, because NFSv3 is designed to be

stateless, issues may arise when using NFSv3 to access data used by applications that rely on

SMB state. Two significant examples are:

NFSv3 access to files that are ‘open exclusive’ by SMB
Because NFSv3 does not have an explicit file open operation, it does not respect SMB’s
open exclusive state.

NFSv3 client access to data with SMB oplocks
NFSv3 client accesses to data within the scope of an SMB client’s oplock generate break
notifications to the SMB client per the protocol specification. Clients (typically file system

9 Some of the smaller models do not support FA Files and FlashArray Volume Services concurrently. Readers are advised to consult

Pure Storage representatives for specific capabilities.

 11 TB-210701-v03

 Pure Storage Proprietary Information

drivers) degrade or release oplocks as appropriate to the circumstances. This is usually
transparent to applications.

For these and similar reasons, Pure Storage suggests disabling NFSv3 access to any shares used

by applications that rely on SMB locks for correct operation.

QUOTAS

Array administrators can assign quotas to managed

directories10 to limit the amount of data that clients

may store in them. Quota limits apply to data as

written by clients, prior to reduction by arrays.

FA Files supports nested quotas. An administrator can

assign a quota to a file system11 and to managed

directories within it. Administrators can overcommit a

file system’s overall quota using nested quotas, but

the file system quota supersedes lower-level ones.

For example, a file system and each managed

directory within it can all have 100GB quotas. In this

scenario, the file system is limited to 100GB, which

can be consumed by its managed directories in any

way. A single directory could consume all 100GB; two

directories could consume 70GB and 30GB respectively, and so forth, but the total consumed by

all managed directories cannot exceed the file system’s 100GB.

The CLI and GUI report available space for subordinate managed directories in the context of the

overall file system’s quota. In the above example, if each of two child directories contains 30GB,

their available space is reported as 70GB, even though their assigned quotas are 100GB. As one

of the child directories receives more data, the available space of the other decreases so that the

file system’s overall quota is honored.

Managed directory ownership is controlled by array administrators. FA Files generates an alert to

a managed directory’s owner when the directory’s storage consumption reaches 80% of its

quota, and a second alert when consumption reaches 90%. Alerts can be directed to users,

groups, or both. Thus, for example, a managed directory that represents a project can have alerts

sent to the project’s IT manager or to all members of the project group. Managed subdirectories

within it can be owned by individual users, and alerts related to the subdirectories directed only

to them.

10 Quotas cannot be assigned to regular (unmanaged) directories.
11 From a VFS standpoint, a client-visible file system is a managed directory.

Figure 9: Nested Quotas

 12 TB-210701-v03

 Pure Storage Proprietary Information

STORAGE ALLOCATION AND ARRAY CAPACITY

FlashArray files and volumes are inherently thin-provisioned. Aside from a small amount of

metadata that describes them, they consume physical storage only for data written by clients.

Administrators and users do not reserve physical storage for specific volumes or files.

Purity//FA is designed to deliver full performance even when an array reports that its physical

flash is 100% occupied. Administrators new to FlashArray may be surprised to discover arrays

reporting that their storage is more than 100% occupied. Arrays achieve full performance at 100%

occupancy by:

⊲ Reserving a certain amount of physical capacity for the software’s internal use. Arrays do
not explicitly report reserved capacity

⊲ Throttling (slowing down) writes when occupancy approaches 100% of reported capacity
to allow time for software to free space occupied by obsolete data

⊲ Generating alerts to array administrators and to Pure1 to provide “breathing room” for
alleviating close-to-full situations by eradicating unneeded data or installing additional
physical capacity.

When array occupancy is above 100% of reported capacity, client and host writes are “throttled”

(delayed slightly) so they experience increased response times, but they do not fail abruptly (read

performance is not materially affected). When the software frees enough space to reduce

occupancy below 100% of reported capacity, it resumes full speed write execution.

HIGH AVAILABILITY AND FAILOVER

If a FlashArray primary controller fails, the array’s secondary controller takes over its role. Each

VIF used by FA Files must therefore include Ethernet ports on both controllers, so when failover

occurs, the new primary controller responds to clients on the same virtual IP address. VIFs must

also include ports on both array controllers for non-disruptive upgrade to be possible.

MONITORING FILE SERVICES PERFORMANCE

Administrators can monitor array performance history via the CLI and GUI. Performance history

displays may include all access to an array or may be filtered to restrict displays to volume or file

services only, to NFS or SMB access only, or to specific managed directories.

 13 TB-210701-v03

 Pure Storage Proprietary Information

SUMMING UP FA FILES
FA Files expands FlashArray capabilities with native file support based on Purity//FA’s Virtual and

Physical Storage layers, proven by nearly a decade of service in an installed base of tens of

thousands of arrays. VFS and the Data Store combine to provide robust, protocol-independent

services to clients using either SMB or NFS to read and write file data. Both protocols have been

developed entirely by Pure Storage engineers; they do not rely on previously existing packages

such as Samba. Unlike file servers originally developed for one protocol and adapted to support

a second, FA Files is strictly layered; both SMB and NFS protocols use the same VFS and Virtual

and Physical Storage layers to a provide uniformly high quality of service to both client

communities. For applications that require it, FA Files supports simultaneous client access via

both protocols.

FA Files allows data centers to consolidate on premise storage for volume and file applications

such as users’ home directories and project directories in highly available, high-performing, cost-

effective, space-efficient arrays that may contain up to 1.4 petabytes of physical flash.

 14 TB-210701-v03

 Pure Storage Proprietary Information

© 2021 Pure Storage

The Pure P Logo, and the marks on the Pure Trademark List at
https://www.purestorage.com/legal/productenduserinfo.html
are trademarks of Pure Storage, Inc. Other names are trademarks of their respective owners. Use of Pure Storage
Products and Programs are covered by End User Agreements, IP, and other terms, available at:
https://www.purestorage.com/legal/productenduserinfo.html
and https://www.purestorage.com/patents
The Pure Storage products described in this documentation are distributed under a license agreement restricting the
use, copying, distribution, and decompilation/reverse engineering of the products. The Pure Storage products
described in this documentation may only be used in accordance with the terms of the license agreement. No part of
this documentation may be reproduced in any form by any means without prior written authorization from Pure
Storage, Inc. and its licensors, if any. Pure Storage may make improvements and/or changes in the Pure Storage
products and/or the programs described in this documentation at any time without notice.
THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS
AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE LEGALLY INVALID. PURE STORAGE SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE
INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

https://www.purestorage.com/legal/productenduserinfo.html
https://www.purestorage.com/legal/productenduserinfo.html
https://www.purestorage.com/patents

